NASA Contractor Report 4192 ### Sidewall Boundary-Layer Measurements With Upstream Suction in the Langley 0.3-Meter Transonic Cryogenic Tunnel A. V. Murthy CONTRACT NASI-17919 (NASA-CR-4192) SIDEWALL BOUNLARY-LAYER BEASUREMENTS WITH UPSTREAM SUCTION IN THE LANGLEY 0.3-METER TRANSONIC CFYOGENIC TUNNEL (Viqyan Research Associates) 57 p CSCL 01A N89-12544 Unclas H1/02 0168963 ### NASA Contractor Report 4192 Sidewall Boundary-Layer Measurements With Upstream Suction in the Langley 0.3-Meter Transonic Cryogenic Tunnel A. V. Murthy Vigyan Research Associates, Inc. Hampton, Virginia Prepared for Langley Research Center under Contract NAS1-17919 National Aeronautics and Space Administration Scientific and Technical Information Division | | | | , | |--|--|--|---| ### **SUMMARY** The Langley 0.3-m Transonic Cryogenic Tunnel has provision for boundary removal from the sidewalls to reduce sidewall interference effects on the test data. This report describes the tests carried out to determine the change in the empty test section sidewall boundary-layer thickness at the model station with upstream boundary-layer mass removal. The boundary-layer measurements showed that the upstream removal region is effective in reducing the boundary-layer thickness at the model station. The boundary-layer displacement thickness reduced from about 1.2 percent to about .4 percent of the test section width. The boundary-layer velocity profiles followed a power law variation in the outer region and showed good correlation when plotted in terms of boundary-layer momentum thickness. ### INTRODUCTION The Langley 0.3-m Transonic Cryogenic Tunnel (0.3-m TCT) is a unique high Reynolds number airfoil test facility. Its first successful operation in 1973 demonstrated the application of cryogenic concept and showed the cooling of the test gas is both economical and practicable to generate high Reynolds number transonic flows. Since then, several additional features added at various stages, make 0.3-m TCT a unique facility for testing airfoils. Reference (1) gives a full description of the evolution and operational characteristics of the 0.3-m TCT. In its present form, the 0.3-m TCT has two distinct features to overcome the limitation of conventional tunnels. First, the operation at low temperatures makes the test gas denser and less viscous. This cryogenic feature coupled with the capability to operate at increased pressures of about 6 atmospheres enables the testing of airfoil models at flight equivalent Reynolds numbers. Second, the application of the adaptive wall concept for the test section reduces wall interference. The adaptive floor and ceiling are of solid, flexible steel plates. The wall contours of the floor and ceiling are adjusted during a test to correspond to nearly free air streamline shapes. This helps to reduce significantly the wall interference effects on model measurements. An additional source of interference arises in two-dimensional airfoil testing. The model flow field affects the growth of the boundary-layer on the sidewalls of the test section. This interaction gives rise to non-uniformity of the flow across the model span. It is difficult to compensate completely for sidewall effects by adjusting the top and bottom walls only. Hence, modern airfoil test facilities use some type of boundary-layer treatment on the sidewalls. The 0.3-m TCT employs a boundary-layer removal system to reduce sidewall interference effects. The system consists of a pair of perforated plates mounted on the sidewalls upstream of the model station. The perforated plates act as suction medium to remove the boundary-layer mass flow. The flow coming out of the perforated plates exhausts directly to the atmosphere in the passive mode. In the active mode of operation, a compressor injects the flow back into the tunnel. The mass flow removal from the test section sidewalls has two effects. First, the test Mach number at the model station changes. The drop in Mach number is approximately proportional to the amount of mass removed. In conventional tunnels with no provision for wall adjustment, a correction is necessary for Mach number change with mass flow removal. Adaptive walls have the advantage of adjusting the wall contours to give uniform Mach number distribution. Second, the boundary-layer thickness reduces due to removal of low energy mass in the boundary-layer. However, downstream of the suction region, the boundary-layer is much thinner and grows rapidly due to higher skin friction. Hence, if the model station is too far downstream, the benefits of boundary-layer removal becomes smaller. For the 0.3-m TCT, there was no attempt during the design to optimize the location of the boundary-layer removal station. The primary effort was towards development of an advanced perforated plate and the associated boundary-layer removal system. With minor modification, it is possible to remove the boundary-layer at the model station or at a downstream station. The suction region of the perforated plates currently being used in the 0.3-m TCT for boundary-layer removal is 6" wide. The downstream edge of the plates is 11.25" ahead of the model turntable center. This report gives details of the sidewall boundary-layer measurements made recently to determine whether the upstream removal location was effective in reducing the boundary-layer thickness at the model station. The tests conducted in the empty test section involved measurement of boundary-layer profiles on the sidewalls at the model station. The range of mass flow removal rates covered in these test were from zero to maximum obtainable with passive operation. The empty test section boundary-layer displacement thickness(δ^*) and shape factor (H) calculated from the profiles are useful in correcting airfoil test data for the sidewall effects. ### **NOMENCLATURE** b : Test section width H: Boundary-layer shape factor L : Reference length (1 inch) m : Mass flow M: Mach number n : Index of power-law for the velocity profile $(U \propto y^{1/n})$ R: Reynolds number per foot U : Velocity y : Distance from the wallδ : Boundary-layer thickness δ^* : Boundary-layer displacement thickness θ : Boundary-layer momentum thickness ### **Subscripts** e : refers to conditions outside the boundary-layer bl : refers to boundary-layer removal ts : refers to test section ### **APPARATUS** ### 0.3-m Transonic Cryogenic Tunnel The 0.3-m TCT (figure 1) is a continuous fan driven tunnel using cryogenic nitrogen as test gas. A 3000 HP variable frequency motor drives the fan. The test Mach number is variable in the range from about 0.05 to 0.9. The stagnation pressure and temperature are variable in the range 1.2 - 6 atmosphere, and 80 - 320 K, respectively. The liquid nitrogen injected into the tunnel circuit before the first corner cools the tunnel to the required stagnation temperature. Under steady conditions, the cooling capacity of the liquid nitrogen is equal to the heat dissipated by the fan. An exhaust valve located near the third corner controls the stagnation pressure in the tunnel. A sophisticated control system enables independent variation of test Mach number, stagnation pressure and temperature. ### Adaptive Wall Test Section The adaptive wall test section (figure 2) has rigid sidewalls, and adjustable floor and ceiling. The cross section is a 13 inch square when the ceiling and floor are parallel. The overall length of the test section is 73.2 inches. Figure (3) shows a schematic arrangement of the 0.3-m TCT adaptive wall test section and the location of the boundary-layer removal region. The flexible ceiling and floor are of stainless steel plates to withstand cryogenic operating conditions. The plate thickness varies along the length. At the upstream fixed end, the thickness is maximum (.375 inches). Near the turntable region, the plate is much thinner (.063 inch) to permit contouring the wall to the streamline shapes. The downstream end moves freely in a sliding joint. The flexible floor and ceiling are supported along the length at twenty-one locations by separate electrically operated jacks. Separate stepping motors drive each of these jacks to the desired contour. For operational convenience, the stepping motors and the jacks are outside the cryogenic environment and the pressure shell enclosing the test section. The push rod attachments between the plates and the jacks pass through the pressure shell. A micro-processor monitors the wall movements and limits the minimum radius of curvature to 30 inches to avoid excessive stresses. The adjustment of wall shapes to free air streamline shapes requires a knowledge of the current wall position and the fluid velocity. Linear Variable Displacement Transducers (LVDT) located at the jack stations, and the pressure orifices on the plate provide this information. Using these data, a wall adjustment strategy calculates the wall position required to simulate the free air conditions in the tunnel. The calculation uses data at only the first eighteen jacks. The last three jacks provide a faring of the wall shapes to the test section exit or diffuser entry. Reference (2) describes in detail the adaptive wall test section and the wall adjustment strategy to eliminate interference. ### Boundary-Layer Removal System Figures (1) through (3) show 0.3-m TCT
sidewall boundary-layer removal scheme. Reference (3) describes in detail the complete system. The purpose of this system is to reduce the sidewall boundary-layer thickness at the model station. The smaller boundary-layer thickness minimizes the tendency for separation and consequent adverse effects on the airfoil measurements. Also, the correction to test Mach number, if any, will be much smaller. Figure (4) shows the details of the boundary-layer removal medium for the adaptive wall test section. It consists of a pair of perforated plates mounted flush on the tunnel sidewalls upstream of the model. The suction region of the perforated plates are 6" wide and 13" high. The plates extend from tunnel floor to the ceiling. The plates have fine holes drilled by using the electron beam technique. The holes are 0.012-inch diameter and 0.032-inch apart giving a nominal open area of about 11 percent. The perforated plates are glued to a honeycomb-large hole plate (fig 4) structure. This fabrication technique provided a rigid, porous medium for boundary-layer removal. The surface exposed to the test section flow is smooth obtained by etching and polishing of the surface. Earlier studies (references 4 and 5) had shown that these perforated plates to be superior to conventional sintered type materials. With no flow, the boundary-layer growth due to surface roughness or hole openings will be much less for these plates. The boundary-layer mass taken out of the test section passes through digital flow control valves. These digital valves consist of a number of calibrated sonic nozzles. The nozzles open or close in appropriate combination to control the rate of mass removal from the test section. A dedicated micro-processor commands the opening and closing of the nozzles. The boundary-layer removal system, as shown in figure 1, operates in two modes, either passive or active. In the passive mode of operation (figure 5), the boundary-layer mass removed exhausts directly to the atmosphere. Therefore, for this mode to be effective, the test section static pressure must be higher than the ambient value. Also, the maximum amount of boundary-layer mass taken out cannot exceed the amount of gas produced by the liquid nitrogen injected to remove heat of compression and maintain maintain test pressure and temperature. The amount of liquid nitrogen injected into the tunnel is considerable at higher Mach numbers due to larger power dissipation. Instead of the normal exhaust procedure, taking out nitrogen gas through boundary-layer removal system offers a convenient operating mode at transonic speeds. The active mode is most useful at low test Mach numbers when the amount of liquid nitrogen injected is quite small. To maintain stable tunnel flow conditions, it is necessary to inject back most of the boundary-layer mass removed. The gas removed passes through a centrifugal compressor. The compressed gas then enters the tunnel circuit at the diffuser location. For the present tests, the boundary-layer removal system operation was in the passive mode for convenience. ### Boundary-Layer Measurements A boundary-layer rake (figure 6) mounted on the right sidewall turntable was used to measure the total pressures in the boundary-layer. The rake had 15 total pressure probes spaced equally .04in apart. The first tube of the rake was at a distance of about 0.04 inch from the wall. For most of the test conditions, the rake was within the sidewall boundary-layer. Hence, it was possible to obtain reliable estimates of the boundary-layer displacement thickness and shape factor. The probe tips were of stainless steel tubing with 0.02 inch outside diameter and 0.01 inch inside diameter. The probe tips were at a distance of 10.125 inch from the downstream edge of the suction region (Figure 6). ### **RESULTS AND DISCUSSION** For the test data in this report, the boundary-layer operation was in the mode. The adaptive wall ceiling and floor contours were set to aerodynamically straight shapes. Hence, with sidewall boundary-layer removal there was a slight drop in the Mach number at the turntable location. This change in Mach number does not have a major effect on the sidewall boundary-layer measurements. The stagnation temperature and pressure varied from about 125K to 230K, and 26 to 71 psi, respectively. The corresponding unit Reynolds number was 26.6 million per foot. With these conditions, the maximum amount of mass flow removal was about 1.7 percent (Figure 7) in the passive mode. For testing under conditions above Mach number of 0.7, the passive removal capability appears adequate. Reference (6) gives the details of calculating the boundary-layer parameters from the measurements. The computer program described in reference (6), converts the boundary-layer rake total pressures to velocities. Integration of these velocities gives the displacement and momentum thicknesses and the shape factor. Figure (8) shows the calculated velocity profiles at the turn- table for a sample case at a Mach number of 0.766, with different levels of boundary-layer removal. With increasing suction rates, the velocity within the boundary-layer increases continuously. Figure (8) also demonstrates that the present upstream location of the boundary-layer removal station is still effective in reducing the boundary-layer thickness at the turntable. Most of the data points in the boundary-layer lie in the outer region of the turbulent boundary-layer. Hence, the program of reference (6) uses a power law velocity variation for extrapolating the experimental data from the first tube to the wall. Figures 9a-c, compare the results of power-law velocity variation with the measured velocities, for Mach numbers .5, .765 and .8. For all the conditions, the comparison indicates that the velocity profiles are close to power velocity variation. The index n in the power law for velocity is a strong function of the suction velocity (figure 10). It increase from about 7 for zero mass flow removal to about 13 with maximum removal. The dependence on Mach number is not significant. For zero mass flow removal, it is close to 7 over the Mach number range 0.3 to 0.8 (Figure 11). The displacement thickness and shape factor are of particular interest in correcting the test data for sidewall effects. Figures (12) and (13) show their variation with increasing mass flow removal. The displacement thickness is about 1.3 percent of the test section width when there is no mass removal. It reduces to about 0.6 percent with maximum removal. However, the mass flow removal is most effective from 0 to about 1 percent. Beyond one percent removal, the decrease in boundary-layer thickness is rather small. Also, with suction the initial spread in data at zero removal, almost vanishes. The shape factor variation is similar for conditions with and without mass removal. The shape factor reduces by about .1 under maximum removal condition. The dependence on Mach number is strong. It increases from from 1.25 at low Mach numbers to about 1.4 at a Mach number of about .8. Figures 14a-c compare the boundary-layer velocity profiles at different Mach numbers for fixed boundary-layer removal rates. This demonstrates that the sidewall boundary-layer velocity variation depends primarily on the rate of boundary-layer removal. The effect of Mach number is secondary. Figures 15a-c correlate the variation of the boundary-layer velocity with distance from the wall in terms of the boundary-layer momentum thickness (y/θ) . The data for different non-zero boundary-layer removal rates correlate satisfactorily. The results presented in this report cover only one Reynolds number at 26.6 million per foot. Appendix A tabulates the calculated boundary-layer parameters and the velocity profile details for all the data points. At lower Reynolds numbers, the boundary-layer thickness will be larger. But with suction, the effect of Reynolds number may become secondary. With about 1.5 percent suction rate, the sidewall boundary-layer displacement thickness is about .4 percent of the test section width $(2\delta^*/b)$. The correction for the airfoil test data for sidewall boundary-layer interference effects depends on the empty test section boundary-layer characteristics $(2\delta^*/b \text{ and H})$, the airfoil model aspect ratio and the test Mach number. At transonic speeds, the present boundary-layer measurements suggest that the maximum correction to the test Mach number will be about -0.004. This correction is based on one-dimensional changes in the flow area due to changes in the sidewall boundary-layer thickness. Three-dimensional effects tend to make the corrections much smaller. It may be noted that the correction is valid only as long as the boundary-layer remains attached to the sidewall. ### **CONCLUSION** Sidewall boundary-layer measurements at the model location show that the upstream removal location is quite effective. The boundary-layer displacement thickness reduces from about 1.2 percent to about .4 percent of the test section width, with passive boundary-layer removal. The measured velocity profiles follow a power law variation in the outer region and show good correlation when plotted in terms of boundary-layer momentum thickness. ### REFERENCES - Ladson, C. L.; and Ray, E. J.: Evolution, Calibration, and Operational Characteristics of the Two-Dimensional Test Section of the Langley 0.3-Meter Transonic Cryogenic Tunnel. NASA Technical Paper 2749, September 1987. - Wolf, S. W. D.: Evaluation of a Flexible Wall Testing Technique to Minimize Wall Interferences in the NASA Langley 0.3-m Transonic Cryogenic Tunnel. AIAA Paper 88-0140, Jan. 1988. - 3. Johnson, C. B.; Murthy, A. V.; and Ray, E. J.: A Description of the Active and Passive Sidewall-Boundary-Layer Removal Systems of the 0.3-Meter Transonic Cryogenic Tunnel. NASA Technical Memorandum 87764, November 1986. - 4. Murthy, A. V.; Johnson, C. B.; Ray, E. J.; Lawing, P.
L.; and Thibodeaux, J. J.: Studies of Sidewall Boundary-Layer in the Langley 0.3-Meter Transonic Cryogenic Tunnel With and Without Suction. NASA Technical Paper 2096, March 1983. - 5. Murthy, A. V.; Johnson, C. B.; Ray, E. J.; and Stanewsky, E.: Investigation of Sidewall Boundary-Layer Removal Effects on Two Different Chord Airfoil Models in the Langley 0.3-Meter Transonic Cryogenic Tunnel. AIAA Paper 84-0598, March 1984. - Murthy, A. V.: Calculation of Sidewall Boundary-Layer Parameters from Rake Measurements for the Langley 0.3-Meter Transonic Cryogenic Tunnel. NASA Contractor Report 178241, February 1987. TABLE I Summary of 0.3-m TCT Sidewall Boundary-Layer Measurements (TEST: 213) | | | | · | | | | | | | | | |------|-----|-------------|-----------|----------------|-----------------------|----------------|--------------|-------|-----------------------|--------|------| | T | R | P | М | R _e | P _t
psi | T _t | m
Խ
0% | δ/L | δ^*/\mathbf{L} | θ | Н | | | | | | | | | | | | | | | 213- | 0.3 | 0.1 | .7025 | .269E+08 | 70.01 | 220.7 | 0.00 | | 0000 | 0.40.5 | | | 213- | | | .7023 | | 70.91 | 230.7 | 0.00 | .6666 | .0889 | .0605 | 1.47 | | | | | | .270E+08 | 71.12 | 230.6 | 0.50 | .5415 | .0572 | .0406 | 1.40 | | 213- | | | .7037 | .269E+08 | 70.89 | 230.6 | 1.00 | .4961 | .0464 | .0335 | 1.38 | | 213- | 03- | 04 | .7032 | .269E+08 | 70.88 | 230.6 | 1.40 | .4700 | .0405 | .0294 | 1.37 | | 213- | 04- | 05 | .7324 | .269E+08 | 69.23 | 230.8 | 0.00 | .6528 | .0857 | .0580 | 1.47 | | 213- | 04- | 06 | .7333 | .269E+08 | 69.08 | 230.7 | 0.50 | .5305 | .0554 | .0390 | 1.42 | | 213- | 04- | 07 | .7310 | .269E+08 | 69.24 | 230.6 | 1.00 | .4981 | .0466 | .0333 | 1.40 | | 213- | 04- | 08 | .7308 | .270E+08 | 69.39 | 230.7 | 1.60 | .4635 | .0385 | .0278 | 1.38 | | 213- | 05_ | nα | .7516 | .266E+08 | 67.50 | 230.9 | 0.00 | 6367 | 0005 | 0544 | | | 213- | | | .7523 | .269E+08 | | | 0.00 | .6267 | .0805 | .0544 | 1.48 | | 213- | | | | | 68.18 | 231.0 | 0.50 | .5369 | .0565 | .0395 | 1.43 | | | | | .7511 | .270E+08 | 68.52 | 230.8 | 1.00 | .4903 | .0451 | .0320 | 1.40 | | 213- | 03- | 12 | .7497 | .268E+08 | 68.04 | 230.6 | 1.60 | .4578 | .0373 | .0267 | 1.39 | | 213- | | | .7622 | .269E+08 | 67.53 | 230.8 | 0.00 | .6371 | .0829 | .0556 | 1.49 | | 213- | 06- | 14 | .7599 | .268E+08 | 67.53 | 231.1 | 0.50 | .5326 | .0554 | .0387 | 1.43 | | 213- | 06- | 15 | .7607 | .267E+08 | 67.21 | 230.8 | 1.00 | .4975 | .0464 | .0328 | 1.41 | | 213- | 06- | 16 | .7630 | .269E+08 | 67.58 | 230.6 | 1.70 | .4567 | .0367 | .0262 | 1.39 | | 213- | 07- | 18 | .7794 | .268E+08 | 66.78 | 231.1 | 0.00 | .6247 | 0010 | 0541 | 1.40 | | 213- | | | .7816 | .270E+08 | 66.86 | 230.9 | 0.50 | | .0810 | .0541 | 1.49 | | 213- | | | .7807 | .269E+08 | | | | .5305 | .0553 | .0382 | 1.44 | | 213- | | | .7807 | | 66.77 | 230.8 | 1.00 | .4895 | .0455 | .0319 | 1.42 | | 213- | 07- | 21 | ./600 | .266E+08 | 66.02 | 230.8 | 1.76 | .4517 | .0356 | .0253 | 1.40 | | 213- | 08- | 22 | .8000 | .268E+08 | 66.45 | 232.8 | 0.00 | .6093 | .0792 | .0524 | 1.51 | | 213- | -80 | 23 | .8048 | .267E+08 | 65.44 | 231.1 | 0.50 | .5322 | .0556 | .0381 | 1.45 | | 213- | 08- | 24 | .8005 | .270E+08 | 66.13 | 231.0 | 1.00 | .4897 | .0457 | .0318 | 1.43 | | 213- | 08- | 25 | .8048 | .272E+08 | 66.37 | 230.8 | 1.80 | .4473 | .0343 | .0242 | 1.43 | | | | | | | | | 1.00 | .4475 | .0343 | .0242 | 1.41 | | 213- | | | .6539 | .269E+08 | 74.42 | 230.7 | 0.00 | .6284 | .0807 | .0562 | 1.43 | | 213- | 09- | 28 | .6498 | .269E+08 | 74.55 | 230.6 | 0.50 | .5341 | .0550 | .0399 | 1.37 | | 213- | 09- | 29 | .6535 | .271E+08 | 74.80 | 230.6 | 1.00 | .4962 | .0463 | .0340 | 1.36 | | 213- | 10- | 32 | .2988 | .270E+08 | 63.08 | 130.5 | 0.00 | .5948 | .0708 | .0541 | 1.30 | | 213- | | | .3031 | .275E+08 | 62.97 | 129.8 | 0.50 | .5313 | .0546 | | | | 213- | | | .3013 | .273E+08 | 62.90 | 129.8 | | | | .0430 | 1.26 | | 2132 | 10- | J -7 | .5015 | .213E+U0 | 02.90 | 127.8 | 0.80 | .4973 | .0466 | .0372 | 1.25 | | 213- | | | .5016 | .271E+08 | 40.35 | 129.7 | 0.00 | .6161 | .0758 | .0556 | 1.36 | | 213- | | | .4995 | .270E+08 | 40.35 | 129.8 | 0.50 | .5446 | .0565 | .0427 | 1.32 | | 213- | 11- | 37 | .4997 | .266E+08 | 39.65 | 129.8 | 1.00 | .5049 | .0467 | .0359 | 1.29 | | | | | | | | | | | | | | TABLE I Summary of 0.3-m TCT Sidewall Boundary-Layer Measurements (TEST: 213) | T R P | M | R _e | P _t
psi | T _t | m
% | δ/L | δ*/L | θ Ι | H - | |-------------|-------|----------------|-----------------------|----------------|---------------|-------|-------|-------|------| | 213- 12- 38 | .8189 | .265E+08 | 28.70 | 130.4 | 0.00 | .6191 | .0785 | .0519 | 1.51 | | 213- 12- 39 | .8213 | .267E+08 | 27.13 | 125.0 | 0.50 | .5399 | .0569 | .0387 | 1.46 | | 213- 12- 40 | .8187 | .266E+08 | 27.10 | 124.9 | 1.00 | .4905 | .0451 | .0312 | 1.44 | | 213- 12- 41 | .8196 | .262E+08 | 26.67 | 124.9 | 1.80 | .4578 | .0361 | .0254 | 1.42 | | 213- 13- 42 | .8405 | .268E+08 | 35.49 | 151.7 | 0.00 | .6291 | .0795 | .0522 | 1.52 | | 213- 13- 44 | .8393 | .269E+08 | 35.49 | 151.5 | 0.50 | .5351 | .0554 | .0375 | 1.47 | | 213- 13- 45 | .8454 | .269E+08 | 35.41 | 151.3 | 1.00 | .5078 | .0475 | .0325 | 1.45 | | 213- 13- 46 | .8431 | .271E+08 | 35.68 | 151.4 | 1.66 | .4623 | .0368 | .0256 | 1.43 | Figure 1: Schematic Layout of the Langley 0.3-Meter Transonic Cryogenic Tunnel ### ORIGINAL PAGE IS OF POOR QUALITY Figure 2: Adaptive Wall Test Section of the 0.3-m TCT ## 0.3-m TCT ADAPTIVE WALL TEST SECTION Figure 3: Location of Ceiling and Floor Jacks, and Perforated Plates for Boundary-Layer Removal ### ORIGINAL PAGE IS DE POOR QUALITY Figure 4: Details of Perforated Plates used for Boundary-Layer Removal # SIDEWALL BOUNDARY-LAYER REMOVAL PASSIVE BLEED SCHEME Figure 5: Side Wall Boundary-Layer Passive Removal Scheme Figure 6: Boundary-Layer Rake Total Pressure Tubes (Enlarged View) Figure 7: Passive Boundary-Layer Removal Capability Variation with Mach Number Figure 8: Boundary-Layer Velocity Profiles for Different Suction Rates Figure 9a: Comparison of Measured Velocity Profiles with Power-law variation Figure 9b: Comparison of Measured Velocity Profiles with Power-law variation Figure 9c: Comparison of Measured Velocity Profiles with Power-law variation Figure 10: Variation of Index n in Power-law with Rate of Suction Figure 11: Variation of Index n in Power-law with Mach number for Zero Suction Rate Figure 12: Variation of Side Wall Boundary-Layer Displacement Thickness at Model Station with upstream suction. Figure 13: Variation of Side Wall Boundary-Layer Shape Factor at Model Station with upstream suction. Figure 14a: Comparison of Boundary-Layer Profiles for Different Mach Numbers with no Mass Flow Removal. Figure 14b: Comparison of Boundary-Layer Profiles for Different Mach Numbers with 0.5 percent Mass Flow Removal. Figure 14c: Comparison of Boundary-Layer Profiles for Different Mach Numbers with 1.0 percent Mass Flow Removal. Figure 15a: Correlation of Boundary-Layer Profiles in terms of Momentum Thickness for M=0.5 Figure 15b: Correlation of Boundary-Layer Profiles in terms of Momentum Thickness for M=0.765 Figure 15c: Correlation of Boundary-Layer Profiles in terms of Momentum Thickness for M=0.8 ## **APPENDIX A** ## 0.3-M TCT ADAPTIVE WALL TEST SECTION SIDEWALL BOUNDARY-LAYER MEASUREMENTS | 0.3-M TCT ADAPTIVE WALL TEST SECTION
RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS | 213 · 3 · 2 0.50% TOTAL BL REMOVAL PORT=0 | AVERAGE MACH NUMBER AVERAGE REYNOLDS NUMBER/FT AVERAGE STAGNATION PRESSURE PSIA 71.1248 AVERAGE STAGNATION TEMPERATURE K 75600 RATIO OF SPECIFIC HEATS RECOVERY FACTOR REFERENCE LENGTH SCALE L (INCHES) | ILE : 9.675
TA/L : .541
STAR/L : .057
: 1.408 | A: DISPLACEMENT AND MOMENTUM THICKNESS REFER
TO COMPRESSIBLE VALUES.
B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED
USING POWER-LAW FROM WALL TO FIRST TUBE. | NO. Y/L M/MINF P/PT T/TINF U/UINF | 0337 .7345 .8626 1.0395 .748 | 1184 . 8434 . 9122 1.0244 . 853 | 778. 1.0207 1.0208 . 9251 1.0207 . 877 | 2272 . 9110 . 9475 1.0143 . 917 | 3043 .9415 .9648 1.0095 0.44 | 9 .3417 .9534 .9717 1.0076 .957 | . 5903 | . 4696 . 9856 . 9911 1.0024 . 986 | 5 .5114 .9924 .9952 1.0013 .993
4 .5567 .9950 .9960 1.0013 .55 | 9. 10001 | |--|---|--|--|--|-----------------------------------|------------------------------|---------------------------------|--|---------------------------------|------------------------------|---------------------------------|------------|-----------------------------------|---|------------| | SECTION
Asurements | MOVAL PORT=0 | : .269E+08
: .269E+08
: .70.9145
: .230.7589
: .7600
: .9126 | . 7.4295
6666
0889
0605
4700 | ESS REFER
ESS CALCULATED
ST TUBE. | 2
- | 1.0467 .6939
1.0399 .7464 | .0351 .780 | . 0280 . 830 | .0222 .846 | .0184 .892 | .0115
.0111 | .0082 .953 | .0058 .967 | .0020 | .0010 .994 | | E WALL IEST
ARY-LAYER ME | TOTAL BL RE | FT
RATURE K
L (INCHES) | PROFIL
DELTA
ELTAST
/L | NTUM THICKN
S.
NTUM THICKN
WALL TO FIR | ٩. | .8403 | 876
886 | 006 | 908
919 | 932 | 959 | 696 | 978
986 | 992 | 966 | | WALE BOUNDA | 1 0.00% | UMBER
LDS NUMBER/
ATION PRESS
ATION TEMPE
FIC HEATS
OR SCALE | POWE
THICK
NESS | T AND
MOME
18LE VALUE
T AND MOME
-LAW FROM | ~ | . 7320 | 789 | 818 | 858 | 883 | 931 | 676 | 906 | 786 | 766 | | RIGHT SIDES | 3 . 3 | RAGE REYNOL
RAGE STAGNA
RAGE STAGNA
RAGE STAGNA
NDTL NUMBER
10 OF SPECT
OVERY FACTO | JE OF N IN IDARY-LAYER LACEMENT T SUTUM THICK F FACTOR | ISPLACEMEN
O COMPRESS
ISPLACEMEN
ISPLACEMEN | | .0754 | 153 | 195 | 262 | 304 | 390 | 2 5 8 | 10 | 5.56 | χ
> | | - | 213 | A A A A A A A A A A A A A A A A A A A | O I O E E E E E E E E E E E E E E E E E | . 8

. ∪ ∪ | | - 0 + | 1 4 | rv « |) ~ (| ∞ 0- | | | 13. | | | | ECTION
Surements | OVAL PORT=0 | 0700000 | : 11.6376
: .4700
: .0405
: .0294
: 1.3775 | ESS REFER
ESS CALCULATED
ST TUBE. | TINF U/UINF | 1.0350 .7827 1.0254 .8475 | .0143 .917 | .0103 .941 | .0067 | .0049 .972
.0035 .980 | .0020 .989 | .0011 .994 | . 0000.
899. | 966. 7000. | .0002 | |------------------------------|-------------|--|--|--|---------------|---------------------------|------------|-------------|------------|--------------------------|---------------|------------------|-----------------------|---------------------|-------------------| | LL TEST S'
LAYER MEA | AL BL REM | PSIA
URE K
INCHES) | DFILE
ELTA/L
TASTAR/L | UM THICKNE
UM THICKNE
LL TO FIRS | ۰ | . 9088 | 777 | 961 | 9 0 0 | 981
986 | 665 | 966 | , a | 866 | 566 | | ADAPTIVE WA
Ll boundary · | 1.40% TOT | MBER
S NUMBER/FT
ION PRESSURE
ION TEMPERAT
IC HEATS
H SCALE L (| OWER LAW PROTHICKNESS DICKNESS DEL'ESS THETA/L | T AND MOMENTUIBLE VALUES. T AND MOMENTU | 2 | . 8369 | 384 | 936 | 947
958 | 970 | 988 | 66 | 000 | 0.00 | 366 | | 0.3-M TCT
HT SIDEWA | 3 - 2 | E MACH NU E REYNOLD E STAGNAT E STAGNAT L NUMBER OF SPECIF NY FACTOR | OF N IN PRY-LAYER CEMENT THUM THICKN | PLACEMEN
COMPRESS
PLACEMEN
NG POWER | 1/1 | .0337 | 1 1 8 | 95 | 227
262 | 307 | - 0
0
0 | 4 2 8 | 46 | 556 | 26.5 | | 8 I G | 213 . | AVERAGI
AVERAGI
AVERAGI
PRANDT
RATIO
RECOVE | VALUE
BOUNDA
DISPLA
MOMENT | A: DIS
10
B: DIS
USI | . 0 2 | - 2 | M × | 4 IV | 9 | - co (| , <u>-</u> | 7. | 12 | 2 - 7 | 12 | | | 0=. | 037
+ 08
912
354
000
126 | 461
961
464
335
878 | ATED | U/UINF | 9326 | 8 7 8 | 902
927 | 9 9 | 962 | 972 | 0
0
0
0 | 666 | 966 | . 8
. 6
. 6 | | ECT TON
Surements | OVAL PORT | 269E4
70.89
70.89
1.230.65 | 1.8 | ESS REFER
ESS CALCUL
ST TUBE. | T/TINF | 50 | 20 | 116 | 010. | 900 | .005 | .003 | .001 | 000. | 000. | | ALL TEST S
-LAYER MEA | TAL BL REM | E PSIA
TURE K
(INCHES) | FILE
LTA/
ASTA | TUM THICKN
TUM THICKN
ALL TO FIR | P / P T | 371 | 925 | 938 | 960 | 967
975 | 981 | 988 | 7
7
7
7
7 | 66 | .9982 | | ADAPTIVE W
L BOUNDARY | 1.00% TO | MBER
S NUMBER/FT
ION PRESSUR
ION TEMPERA
IC HEATS
H SCALE L | WER LAW PHICKNESS CKNESS OF | AND MOMEN
BLE VALUES
AND MOMEN
LAW FROM W | H/HINF | 757 | 698 | 895 | 726 | 946 | 696 | 981 | 9 6
9 6
9 6 | 966 | .9972 | | 0.3-M TCT
HT SIDEWAL | м
,
м | E MACH NUI
E STAGNAT
E STAGNAT
E STAGNAT
E NUMBER
OF SPECIF
NOF FACIOR | OF N IN PORT OF N IN PORT OF THE CEMENT THE FACTOR | PLACEMENT
COMPRESSI
PLACEMENT
NG POWER- | ۲/۲ | 333 | 118 | 153 | 195
227 | 262 | 341 | 390 | 428 | 517 | 5567 | | A 16. | 213 . | AVERAGAVERAGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGGAVERAGAVERAVERAVERAVERAVERAVERAVERAVERAVERAVER | ALUE
OUND
ISPL | : 01
10
10
US | 0
2 | | ~ ~ | 14 | v v | ~ 0 | ۰ ٥ | 10 | - ; | - 1
2 | 145 | ## ORIGINAL PAGE IS OF POOR QUALITY ## ORIGINAL PAGE 10 OF POOR QUALITY | | | OF POOR QUALITY | <u></u> | 0 | • | 8 | ~ | vo | • | 9 | 2 | 827 | 0 | 2 | ø | œ | Ø | ထ | | |--------------------------|------------|--|---------|-----|-------|------------|------------|------------|-------------|---------------|----------|-----------|---------------|-----------|------|------|------|------------------|----------| | v | R T = 0 | 7308
1937
7121
7600
4000
9126
0000
1708
4635
.0278
.3858
.14635 | U/UIN | / | 8 | ø | ٥ | 0 | 0 | Ó | 0 | 8 | 6 | 0 | Ò | o | o | 0 | | | T I ON
R E M E N T | VAL PO | . 270
. 69.
. 230.
. 11.
. 12.
. 12.
. 12.
. 14.
. 14. | /11 | 036 | .026 | 018 | .014 | 010 | | 900 | 700 | 1.0033 | .001 | .001 | 000. | 000. | 000. | 000. | | | EST SEC | BL REMOV | SIA
K
HES)
HICKNES | T 14, | 2.1 | 5.7 | 17 | 7.1 | 7 0 | | - 4 | | 874 | 3.0 | 63 | 73 | 88 | 85 | 91 | | | WALL T | TOTAL | FERTURE PS
SURE PS
L (INC)
PROFIL
S DELTAST
A/L
A/L
IENTUM T
I WALL T | ۵ | • | 0 | O | . 0 | . 0 | . c | > 0 | ٠ ٥ | | ٠, | ٠ ٥ | Ò | 0 | 0 | 0 | | | ADAPTIVE
L BOUNDA | 1.60% | BER
NUMBER
ON PRES
ON TEMP
C HEATS
SCALE
ICKNESS
ICKNESS
ICKNESS
ICKNESS
AND MOW
BAND MOW
BAND MOW
AND MOW
LAW FROM | M/MINF | 776 | 7 | 0 | | | - C | 7 7 7 | 7 6 | . 4 / 4 0 | - 0
0
0 | 700 | 266 | 866 | 266 | 866 | | | .3-M TCT
T SIDEWAL | 8 . 4 | MACH NUM
REYNOLDS
STAGNATI
STAGNATI
STAGNATI
NUMBER
F SPECIF
F N IN PO
Y-LAYER
THICKNI
ACTOR
ACTOR
ACTOR
ILACEMENT
ILACEMENT
ILACEMENT
IC POWERS | ٨/٢ | 7 | , , | | 9 6 | 7 |)
)
(| 777 | 707 | 5 C 4 | - C |) a |) (C | , L | | . 5981 | | | 0
R 1 G H | 213 - | AVERAGE AVERAGE AVERAGE AVERAGE AVERAGE PRANDTL RATIO O REFEREN VALUE O DISPLAC MOMENTU SHAPE F TO C B: DISP | 0
2 | | - ɾ | 4 6 | ^ \ | J 1 | Λ. | 9 1 | <u> </u> | æ ¢ | > 4 | 0. | | 7 2 | | - - - | 1 | | | | | | | 9 | κi | 0 | | .7 | 33 | 17 | 8 | <u>6</u> | 80 | 96 | 25 | 0.5 | 2 / S | 0 | | σ | R 1 = 0 | 7310
2463
2463
6756
7600
4000
9126
0000
0481
4081
4007 | U/UINF | | 7.7 | 33 | 37 | 90 | 92 | 93 | 95 | 96 | 6 | 8 | 800 | 66 | 9 | 200 | <u>,</u> | | ECT I ON
Surement | OVAL PO | 2698
 | T/TINF | | .039 | .029 | .022 | .017 | .013 | 011 | .009 | 0.07 | .005 | .003 | .002 | .001 | 000 | 1.0005 | 0 | | ALL TEST S
-LAYER MEA | TAL BL REM | E PSIA TURE K (INCHES) OFILE ELTA/L TASTAR/L UM THICKN (LL TO FIR | P / P T | | 863 | 895 | 919 | 934 | 676 | 957 | 965 | 73 | 626 | 987 | 665 | 995 | 66 | .9982 | Š | | ADAPTIVE W | 1.00% TO | HBER
S NUMBER/FI
ION PRESSUR
ION TEMPERA
IC HEATS
H SCALE L
HICKNESS DE
ICKNESS DE
ESS THETA/
ESS THETA/
ESS THETA/
ESS THETA/
ESS THETA/
AND MOMEN
AND MOMEN
LAW FROM W | E X |
: | 758 | 324 | 369 | 39.5 | 100 | 7 6 | 976 | 959 | 696 | 981 | 988 | 992 | 966 | . 9973 | 998 | | 0.3-M TCT
HT SIDEWAL | 7 - 4 | E MACH NUI
E STAGNAT
E STAGNAT
E STAGNAT
E STAGNAT
OF SPECIF
OF SPECIF
RY FACTOR
NCE LENGT
NCE LENGT
NCE LENGT
PLACEMENT
FACTOR
FACTOR
FACTOR | | | 7 3 3 | 0.75 | 1 2 8 | . 2 | , 0 | - v - | 7 | 307 | 341 | 390 | 428 | 597 | 511 | .5567 | 2 6 | | R 1 G F | 213 - | AVERAGE
AVERAGE
AVERAGE
PAVERAGE
PATIO
PATIO
VALUE
VALUE
OUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA
BOUNDA | 2 | | - | ۰ ۸ | ۸ ۱ | ۰ ۱ | t u | n 4 | ۸ ۵ | - α | • • | 10 | | 12 | 13 | 14 | 15 | | ADAPTIVE WALL TEST SECTION | UNDARY-LAYER MEASURFMENTS | |----------------------------|---------------------------| | 0.3-M TCT ADAF | IDEWALI | | 0.5-M T
RIGHT SIDE | TCT ADAPTIVE
EWALL BOUNDAR | WALL TEST
RY·LAYER M | SECTION
EASURENE | SLX | œ | O.3-M T | CT ADAPTIVE
WALL BOUNDAI | WALL TEST
RY-LAYER M | SECTION
EASUREMEN | S L | |--|---|---|-----------------------------|--|---------------------------------------|--|---|--------------------------------------|---------------------------------------|---| | 213 · 5 · | 9 0.00× 1 | TOTAL BL RI | EMOVAL | PORT = 0 | 213 | . 5 | 0 0.50% | TOTAL BL R | EMOVAL P | ORT=0 | | AVERAGE MACH
AVERAGE STAGN
AVERAGE STAGN
AVERAGE STAGN
PRANDTL NUMBEN
PRATIO OF SPEC
RECOVERY FACT | NUMBER
LDS NUMBER/
ATION PRESS
ATION TEMPE
IFIC HEATS
OR | URE PSIA
RATURE K
(INCHES) | | .7516
66E+08
7.5030
0.9341
.7600
1.4000 | A A A A A A A A A A A A A A A A A A A | AGE MACH I
AGE REYNOI
AGE STAGN/
AGE STAGN/
OTL NUMBER
VERY FACTC | NUMBER
LDS NUMBER/F
ATION PRESSU
ATION TEMPER
IFIC HEATS
OTH SCALF | T
RE P
ATURE | 23.5 | . 7523
9E+08
. 1838
. 7600
. 4000 | | ALUE OF
OUNDARY. | POWER LAW | PROFILE
DELTA/L | | 7.9104 | D L C | OF N IN | POWER LAW
THICKNESS | ROFILE
DELTA/L | - 0 | 98 60 60 60 60 60 60 60 60 60 60 60 60 60 | | DISPLACEMENT
MOMENTUM THIC
SHAPE FACTOR | THICKNESS D
KNESS THETA | ELTASTAR/L
/L | | .0805
.0544
1.4813 | DISPL
Momen
Shape | ACEMENT T
TUM THICK
FACTOR | HICKNES
NESS TH | LTASTA | | 0.56
0.39
4.32 | | A: DISPLACEME
TO COMPRES
B: DISPLACEME
USING POWE | NT AND MOME
SIBLE VALUE
NT AND MOME
R-LAW FROM | NTUM THICKNS:
NTUM THICKNWALL TO FIR | NESS REFINESS CALORERS TUBE | ER
CULATED | . A
 | SPLACEMEN
COMPRESS
SPLACEMEN | T AND MOMEN
18LE VALUES
T AND MOMEN
'LAW FROM W | TUM THICK
TUM THICK
ALL TO FII | NESS REFER
NESS CALCU
RST TUBE. | LATED | | _ | Z | P/PT | T/TINF | U/UINF | | ۲/۲ | H/MINF | 7 / P | T/TINF | U/UINF | | .033 | 693 | 827 | .051 | 710 | - | 033 | 737 | ν, α | ò | , | | .075 | 748 | 852 | .042 | 764 | 7 | 075 | 801 | 878 | .034 | 2.5 | | . 153 | 0 C | ο α
α | .05 | 967 | ~ | 118 | 845 | 905 | .027 | 85 | | . 195 | 836 | 897 | . 028 | 2 2 2 2 | 4 m | 105 | 871 | 916 | .023 | 88 | | .227 | 854 | 206 | .025 | 865 | 9 | 227 | 912 | 941 | 8 10 . | 90 | | 8 .3043 | . 9010 | 920 | .022 | 800 | ~ ∝ | 262 | 27 | 5.1 | 0.13 | 9.5 | | 9 .341 | 920 | 976 | 014 | 926 | • • | 3 6 4 | 7 O V
7 U | 961 | 010 | 76 | | 0 3 0 0 | 776 | 962 | .010 | 676 | | 390 | 0 2 0 | 000 | 800. | 9.0 | | 1 . 428 | 096 | 972 | .007 | 964 | | 428 | 980 | 986 | | ` o | | 697. | 973 | 981 | .005 | 975 | | 695 | 986 | 000 | 000 | ο α
Ο α | | 116. 2 | 200 | 989 | .002 | 985 | | 511 | 993 | 966 | 00. | 9 0 | | 5 | 995 | . 9968
8969. | 1.0017 | . 9917 | 15 4 | . 5981 | 9566. | 9966. | 1.0008 | 966 | | 0.3-M TCT ADAPTIVE WALL TEST SECTION
RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS | 213 · 5 · 12 1.60% TOTAL BL REMOVAL PORT=0 | AVERAGE MACH NUMBER AVERAGE REYNOLDS NUMBER/FT AVERAGE STAGNATION PRESSURE PSIA AVERAGE STAGNATION TEMPERATURE K C 330.6618 PRANDTL NUMBER RATIO OF SPECIFIC HEATS RECOVERY FACTOR REFERENCE LENGTH SCALE L (INCHES) 1.0000 | ALUE OF N IN POWER LAW PROFILE : 12.4592 JOUNDARY-LAYER THICKNESS DELTA/L : .4578 J | DISPLACEMENT THICKNESS DELTASTAR/L : .0373 OC : .0267 O | A: DISPLACEMENT AND MOMENTUM THICKNESS REFER TO COMPRESSIBLE VALUES. B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED USING POWER-LAW FROM WALL TO FIRST TUBE. | NF P/PT T/TINF U/UINF | 337 .7802 | 1184 . 8938 . 9306 1.0191 . 902 | . 1530 . 9197 . 9466 1.0145 . 758 | 958 1,0083 .958 | 2624 .9650 .9759 1.0064 .968 | 3043 .9752 .9828 1.0046 .977 | 9 3417 .9828 .9889 .9858 .9937 .9991 | 966. 8000.1 6966. 9566. 627 | 766. 900.1 7766. 7966. 9697. | 3 .5114 .9989 .9992 1.0002 .999 | 2567 . 2568 1.0003 . 2588 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. 7.556. | 5 5981 | |--|--|--|---|--|--|-----------------------------------|-----------------|---------------------------------|-----------------------------------|----------------------------|---------------------------------|-------------------------------|--------------------------------------|-----------------------------|---|---------------------------------
--|----------| | 0.3-M TCT ADAPTIVE WALL TEST SECTION
RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS | 213 - 5 - 11 1,00% TOTAL BL REMOVAL PORT=0 | BER
NUMBER/FI
ON PRESSURE
ON TEMPERATU
C HEATS | EFERENCE LENGTH SCALE L (INCRES) | ISPLACEMENT THICKNESS DELTAS
OMENTUM THICKNESS THETA/L
HAPE FACTOR | A: DISPLACEMENT AND MOMENTUM THICKNESS REFER
TO COMPRESSIBLE VALUES.
B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED
USING POWER-LAW FROM WALL TO FIRST TUBE. | NO. Y/L M/MINF P/PT T/TINF U/UINF | 77. 1.0406 .778 | 0754 . 8278 . 8927 1.030 | 1184 .8/31 .9162 .252 | 1955 9251 9498 1.0136 .931 | 2272 . 9374 . 9576 1.0115 . 942 | **** 2401.1 9556. 7949. 2525. | . 3043 . 9804 | 989. 1500.1 .9883 .9883 | 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 .4696 .9936 .9955 1.0012 .994 | 5 114 . 9973 . 9981 1.000 . 5797 . 5979 . 59 | 2 1.0002 | | | EMOVAL PORT=0
: .268E+08
: 67.5317
: 231.1243
: .7600 | . 912
. 912
1.000
10.031 | 0388. | ESS REFER
ESS CALCULATED
ST TUBE. | T/TINF U/UINF | .0450 .756
.0348 .818 | .0230 .884
.0182 .909 | 0131 . 935 | 1.0054 .9742
1.0036 .9829
1.0024 .9886
1.0012 .9943 | 0004 | |---------------------------------------|--|---|--|--|---------------|--------------------------|--------------------------|-------------------|--|-------| | E WALL TEST
ARY-LAYER M | TOTAL BL RE/FT/FT
Sure PSIA
Erature K | L (INCHES)
PROFILE
S DELTA/L | AST | ENTUM THICKNES.
ENTUM THICKN | P / P T | 845
877
902 | 237 | 951
961
969 | . 9955
. 9955
. 9955
. 9955 | 866 | | CT ADAPT
WALL BOU | | GTH SCALE
POWER LA
R THICKNE | THICKNESS
CKNESS THET | ENT AND MOMISSIBLE VALUIENT AND MOMIER. | M/MINF | 740
804
848 | 874
901
915 | 929
945
956 | . 9716
. 9811
. 9874
. 9937 | 866 | | X C | ERAGE MACH ERAGE REYN ERAGE STAGI ERAGE STAGI | COVERY FAC
FERENCE LE
LUE OF N II | SPLACEMENT
MENTUM THI
APE FACTOR | DISPLACEME
TO COMPRES
DISPLACEME
USING POWE | > | 033
075
118 | 153
195
227 | 262
304
341 | .3903
.4289
.4696
.5114 | 9 6 9 | | | 44462 | a a > a
a a > a | ONO |
≪ es | ON | . 3 2 | 400 | ~ 80 6 | 0
1 1 1 2 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 | 15 | | E N 1 S | .762
9E+0
.533
.879
.760 | 912
000
000
821
637 | .0829
.0556
1.4910 | FER
LCULATED
E. | N/UINE | 707. | . 845 | . 905 | . 9641
. 9611
. 9730
. 9843 | 566. | | EST SECTIOR MEASUREM | | ŝ | | CKNESS RECKNESS CAL | /111 | .038 | .030 | 019 | 1.0081
1.0081
1.0033
1.0019 | 000. | | IVE WALL T
NDARY-LAYE
X TOTAL B | R/FT
SSURE PS
PERATURE
S | L CINCH
W PROFILE
SS DELTA/ | DELTASTAR
Ta/l | MENTUM
WENTUM
MENTUM
MENTUM | P / 8 | 248.
248. | 908. | 930 | 0,60,60,00,00,00,00,00,00,00,00,00,00,00 | 0 | | TCT ADAPTI
DEWALL BOUN
13 0.00% | NUMBER
OLDS NUMB
NATION PR
NATION TE
ER | R PO | THICKNES
CKNESS TH | 0 - 0 0 | M 1 P | 74477803803 | 8328850 | 896
916 | . 9826
. 9826
. 9800
. 9900 | | | 0.3-M
RIGHT SIC | ERAGE MACH
ERAGE REYN
ERAGE STAG
ERAGE STAG
ANDTL NUMB
TIO OF SPE | ERENCE LUE OF N
NDARY-LA | ACEM
TUM
FAC | DISPLACEM
TO COMPRE
DISPLACEM
USING POL | 7 / 0 | 075
118
153 | 195
227
262 | 304 | . 4289
. 4696
. 5114
. 5567
. 5981 | | | CT 10N
Urements | VAL PORT=0 | 269E + 08
269E + 08
67 . 5874
230 . 6847
7600
 | 12.700
12.700
. 456
. 036
. 026
1.398 | S REFER
S CALCULATED
TUBE. | TINF U/UINF | .0386 .797
.0276 .860
.0194 .904 | .0146 .928
.0103 .950 | 0045 . 978 | 266. 1500.
2000. 8000. | 1.0007 .9969
1.0003 .9987
1.0004 .9981
1.0002 .9988 | | |------------------------------|--------------|--|---|---|-------------|--|--------------------------|-------------------|------------------------------|--|----------| | WALL TEST SE
Y-LAYER MEAS | OTAL BL REMO | U RE SI | (INCHES)
ROFILE
DELTA/L
LTASTAR/L
L | THICK NET THICK NET THE THE THE THE THE THE THE THE THE T | L . | 8656
9016
9297 | 9462
9619
0603 | 9761 | 0000
0000
0000
0000 | . 9975
. 9989
. 9985
1999. | | | T ADAPTIVE V
All Boundary | 1.70% T | UMBER
DS NUMBER/F
TION PRESSU
TION TEMPER
FIC HEATS | POUER LAW POUER LAW PTHICKNESS DE HICKNESS DE NESS THETA/ | T AND HOMEN
1BLE VALUES
1 AND HOMEN
- LAW FROM W | z (| 782
848
895 | 921 | 966 | 991
991
995 | . 9965
. 9985
. 9979
. 9987 | | | O.3-M TC
IGHT SIDEW | . 6 - 16 | AGE REYNOL
AGE REYNOL
AGE STAGNA
AGE STAGNA
DTL NUMBER
O OF SPECTO | KENCE LEN DARY-LAYEN LACENENT THIC | I SPLACOMI
O COMI
I SPLAC
SING | > 1 | 033
075
118 | 153 | 262 | 341
390
428 | . 5567
. 5567
. 5981 | | | œ | 213 | A A A G G G G G G G G G G G G G G G G G | A P P P P P P P P P P P P P P P P P P P | o ⊢ o ⊃ | ∡ | - um | 4104 | 0 ~ 8 | 100 | 12
14
15 | | | v | RT = 0 | 7607
2186
8500
4000
9126 | 00
44
97
32
15 | LATED | U/UINF | 776
838 | 905 | 940
952
963 | 972 | . 9932
7996.
79972
5890 | 0 | | SECTION
Easurements | EMOVAL POR | | 5 5 5 | NESS REFER
Ness calcu
Rst tube. | T/TINF | 042 | 190 | 012 | 005 | 1.0007 | 2 | | WALL TEST
RY-LAYER ME |
TOTAL BL RE | FT
URE PSIA
RATURE K | L (INCHES) PROFILE DELTA/L ELTASTAR/L /L | NTUM THICK
S.
NTUM THICK
WALL TO FI | P/PT | 7.88 | 9 7 6
9 4 6 | 955 | 978 | 9466. | χ
Υ | | T ADAPTIVE
All Boundal | 1.00% | UMBER
DS NUMBER/
TION PRESS
TION TEMPE
FIC HEATS | TH SCALE POWER LAW THICKNESS HICKNESS D | T AND MOME
IBLE VALUE
IT AND MOME | M/MINF | 760 | 8 7 U
8 9 6
9 2 2 | 935 | 969 | 2886
8866
8966
8966 | 866 | | 0.3-M TC
IGHT SIDEW | . 6 - 15 | AGE MACH NAGE REYNOL
AGE STAGNA
AGE STAGNA
AGE STAGNA
OTL NUMBER
OF SPECI | RENCE LEN
BARY-LAYE
LACEMENT
NTUM THIC | DISPLACEMEN
TO COMPRESS
DISPLACEMEN
USING POWER | 1/L | 033 | 118
153
195 | 227 | 390 | . 55 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 508 | | ~ | 213 | A A A A A A A A A A A A A A A A A A A | E F
OU
OU
I S |
4 8 | 0 M | - 21 | w 4 ru | · o ~ o | 000 | L 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | <u>.</u> | | SECTION
ASUREMENTS | MOVAL PORT=0 | 2 7 0 8 1 6
2 7 0 E + 0 8
66 . 86 9 2
2 30 . 90 1 0
7 6 0 0
9 1 2 6
1 . 0 0 0 0 | 0 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | ESS REFER
ESS CALCULATED
ST TUBE. | T/TINF U/UINF | . 0474 | .0288 .861 | .0241 .885 | .0164 .923 | | .0085 .961
.0056 .974 | . 0037 | .0024 .989 | 1.0008 .9965
1.0003 .9985 | |------------------------------|--------------|---|---|---|---------------|--------|------------|------------|--------------|------------|--------------------------|--------|------------|------------------------------| | WALL TEST | TOTAL BL RE | INTE PSIA
RATURE K
L (INCHES) | PROFILE
DELTA/L
ELTASTAR/L
/L | NTUM THICKN
S.
NTUM THICKNI
WALL TO FIR | P / P T | 838 | 897 | 913
930 | 076 | 960 | 900 | 986 | 990 | 9987 | | TCT ADAPTIVE
EWALL BOUNDA | 19 0.50% | NUMBER
OLDS NUMBER/
NATION PRESS
NATION TEMPE
ENFIC HEATS
TOR | N POWER LAW
ER THICKNESS
THICKNESS D | NT AND MOME
SIBLE VALUE
NT AND MOME
R-LAW FROM | M/MINF | 741 | 849 | 902 | 16 | 945 | 971 | 981 | 900 | 9962 | | 0.3-M | 213 - 7 | VERAGE MACH
VERAGE REYNC
VERAGE STAGN
VERAGE STAGN
VERAGE STAGN
VERAGE SPECE
ECOVERY FACT | ALUE OF N IN
OUNDARY-LAYE
ISPLACEMENT
OMENTUM THIC | DISPLACEME
TO COMPRES:
DISPLACEME
USING POWE | ٠ ۲/۲ | .033 | 8. | . 195 | .227 | 304 | 390 | .428 | .511 | .5981 | | | | < < < € 0. ∞ ∞ ∞ | | ≪ ca | ON | | | | | | - | | | 6 14
9 15 | | Σ
Σ | PORT=0 | .7794
268E+08
66.7803
31.1210
1.4000
-9126 | 7.9120
.6247
.0810
.0541 | CULATED | U/UINF | . 710 | .800 | .850 | .887 | . 909 | 676 | 796. | . 985 | . 991 | | ST SECTION
MEASUREM | REMOVAL | | | CKNESS REF
CKNESS CAL
FIRST TUBE | T/TINF | 1.0550 | 039 | 030 | .027
.023 | 019 | 010 | 007 | 000 | 000 | | E WALL TE
Ary-layer | TOTAL BL | /FT
Sure PSI
Erature
L (Inche | ہے ہے | ENTUM THICES.
ENTUM THIC | P/PT | .8156 | 861874 | 89.1 | 915 | 930 | 959 | 0 0 | 88 | 960 | | CT ADAPTIV
Wall bound | 8 0.00% | NUMBER
LDS NUMBER
ATION TEMP
R
IFIC HEATS
OR SCALE | POWER LAIL R THICKNES THICKNESS THET | NT AND MOME
SIBLE VALUI
NT AND MOME
R-LAW FROM | = | .6913 | 784
808 | 837 | 40 | 900
919 | 776 | 700 | 984 | 9 6 6 | | 0.3-M T
RIGHT SIDE | 13 - 7 - 1 | ~ ~ « « × × · · · · · · · | UE OF N IN NDARY-LAYE PLACEMENT ENTUM THIC | DISPLACEME
TO COMPRESS
DISPLACEME
USING POWER | > | .0337 | 153 | 195 | 262 | 341 | 300 | 9 0 | 511 | 0 00 | | | 21 | | VAL
BOU
BOU
MON
SHA |
≼ œ | . 0 | - ~ + | n 4 | ro xo |) ~ 0 | 00 | | 12 | 13 | 2 2 | | ECTION
Surements | IOVAL PORT=0 | 266E+08
266E+08
66.0217
. 230.8177
. 1.4000
. 9126
. 1.0000 | 12.9600
: .4517
: .0356
: .0253 | ESS REFER
ESS CALCULATED
ST TUBE. | Z | .0399 .801
.0283 .863
.0197 .907 | .0102 .953
.0102 .953
.0081 .962 | 1.0043 .9805
1.0029 .9805
1.0015 .9933
1.0008 .9966 | .0003 .998 .0004 .998 .0002 .998 | |-------------------------------|--------------|--|--|--|----------|--|---
---|----------------------------------| | WALL TEST S
Y-LAYER MEA | OTAL BL REM | RE PSIA
ATURE K
(INCHES) | ROFILE
DELTA/L
LTASTAR/L
L | TUM THICKNITUM THICKNITUM THICKNITAL | 4 | 861
899
928 | 0000 | . 9883
9884
9843
9971
9970 | 0
0
0
0
0
0 | | T ADAPTIVE
All Boundar | 1.76% 1 | UMBER/F
TION PRESSU
TION TEMPER
FIC HEATS
R
TH SCALE L | POWER LAW P
THICKNESS
HICKNESS DE
NESS THETA/ | T AND MOMEN
181E VALUES
T AND MOMEN
-LAW FROM W | Z | 785
851
898 | 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 9 9 8
9 9 8
9 9 8 | | 0.3.M TC | . 7 . 21 | GE MACH NO GE STAGNA GE STAGNA GE STAGNA GE STAGNA GE STAGNA GE STAGNA GE SPECTO ENCE LENG | ARY-LAYER ACEMENT TIUM THICK | SPLACEMEN
COMPRESS
SPLACEMEN | _ | 033 | 195 | 3013 | 511
556
598 | | ж
1 | 213 | A A A A A A A A A A A A A A A A A B | NA PER | A: D1
10
10
10
8: D1
US | 0
% | - am | 4 NV 40 1 | 86011 | 13
14
15 | | ν | R T = 0 | 7807
E+08
7721
8819
6600
4000
9126 | 2068
4895
0455
0319
4273 | ILATED | <u> </u> | 777
840
883 | 9000 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 997
997
998 | | SECTION
Asurement | MOVAL PO | | | NESS REFER
NESS CALCU
RST TUBE. | z | 227 | 7 7 2 6 | 1.0013 | 000 | | WALL TEST
Y-LAYER ME | OTAL BL RE | T
RE PSIA
ATURE K
(INCHES) | ROFILE
DELTA/L
LTASTAR/L
L | TUM THICKN
TUM THICKN
ALL TO FIS | T 4 / 4 | 849
884
912 | 9 4 5 8 9 6 5 8 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 000 | | T ADAPTIVE 'S
All Boundary | 1.00% TC | UMBER
DS NUMBER/FI
TION PRESSUR
TION TEMPER/
FIC HEATS
TH SCALE L | POWER LAW PI
THICKNESS I
HICKNESS DEI
NESS THETA/I | T AND MOMENIBLE VALUES T AND MOMEN-LAW FROM W | 4NIW/W | 761
826
872 | 9 2 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 9625 | 997 | | 0.3-M TC
GHT SIDEW | . 7 . 20 | GE MACH NGE RECNOL GE STAGNA TO STAG | OF N IN
ARY-LAYER
ACEMENT T
TUM THICK
FACTOR | ISPLACEMENO
O COMPRESS
ISPLACEMEN
SING POWER | ٧/١ | 033
075
118 | 153
195
227 | 3 4 1 7 3 4 1 | 511
511
598
598 | | а
П | 213 | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | VALUE
BOUND
DISPL
MOMEN | | 0 | - 0 m | 4 W Ø I | ~ & & O = _ C | 124 | | ST SECTION | ASUREMENTS | |----------------|------------| | L TEST | AYER ME | | APTIVE WALL TE | UNDARY-L | | ·M TCT ADAP | | | 0.3·M | IGHT SID | | | α | | 0.3-M TCT ADAP
RIGHT SIDEWALL BO | TIVE WALL TEST
UNDARY-LAYER M
OX TOTAL BL R | SECTION EASUREMENTS EMOVAL PORT= | 0 | RIGH
213 . | .3.M TCT SIDEWAL 8 . 23 | ADAPTIVE WAL
L BOUNDARY-L
O.50% TOTA | L TEST S
AYER MEA
L BL REM | ECTION
SUREMENTS
OVAL POR | T = 0 | |--|--|--|----------------------------|--|---|--|----------------------------------|----------------------------------|--| | RAGE MACH NUMBER RAGE REYNOLDS NUM RAGE STAGNATION P RAGE STAGNATION T STAGNATI | MBER/FT PRESSURE PSIA TEMPERATURE K EATS ALE L (INCHES) | 268E+0
268E+0
232.828
 | 08000000 | AVERAGE
AVERAGE
AVERAGE
AVERAGE
PRATIO
O O O
RECOVER | MACH NUM
REYNOLDS
STAGNATI
STAGNATI
NUMBCATI
NOMBCE
F SPECIFI
Y FACTOR | BER
NUMBER/FT
ON PRESSURE
ON TEMPERATU
C HEATS | PSIA
URE K
INCHES) | | 1048
++08
+447
720
000
1126 | | UE OF N IN POWER
NDARY-LAYER THICK PLACEMENT THICKNE ENTUM THICKNESS T | LAW PROFILE NESS DELTA/L SS DELTASTAR/L HETA/L | 7.958
6098
 | O \$2 13 14 AV | VALUE O
BOUNDAR
DISPLAC
MOMENTU | Y-LAYER TY-LAYER TEMENT THI | WER LAW PRO
HICKNESS DE
CKNESS DELT
SS THETA/L | FILE
LTA/L
ASTAR/L | 0 | 5322
0556
0381
4589 | | DISPLACEMENT AND TO COMPRESSIBLE V DISPLACEMENT AND USING POWER-LAW F | MOMENTUM THICK
ALUES.
MOMENTUM THICK
ROM WALL TO FI | NESS REFER
NESS CALCULAT
RST TUBE. | ш
D | A: DISP
B: DISP
USIN | LACEMENT
OMPRESSIB
LACEMENT
G POWER-L | AND MOMENTULE VALUES.
AND MOMENTUAN FROM WAL | THICKNE
THICKNE | SS REFER
SS CALCUI
T TUBE. | LATED | | L M/H1 | NF P/P | F U/ | UINF | . 0 ⊀ | 1/k | | | 2 | U/UINF | | 0337 . 69
0754 . 74
1184 . 78 | 30 .808
96 .836
78 .857 | .057 | 712
767
803 | - 0 m | 33 | 7416
8056
8493 | 8307
8660
8925 | 050. | 759
821
862 | | 1530 .81
1955 .84 | 21 . 871 | 036 | 826
854 | 4 W | 800 | 8750
9016 | 9091 | .020 | 910 | | 2272
2624 .88
3043 .90 | 98 .900
16 .914
56 .930 | 028 | 871
892
914 | 9 ~ 8 | 627 | 915 <i>7</i>
9302
9452 | 9367
9470
9578 | .017 | 923
936
950 | | 3417 .92
3903 .94 | 243
43
86
86
86
86
86
87 | 010. | 931 | | 2 0 0 2 | 9566
9714
9809 | 9663
9775
9849 | 900. | 960 | | N 8 0 0 | . w w w | 1.0051
1.0028
1.0016 | . 9778
. 9877
. 9931 | 132 | . 5567
. 5567 | 9874 | 9900 | 1.0008
1.0008 | 9966 | | 5981 .99 | 266. 59 | .000 | 966 | | 8 | 9985 | 8866 | 000. | 998 | | 0.3-M TCT
RIGHT SIDEW | T ADAPTIVE
All Boundar | WALL TEST ?
Y-LAYER ME/ | SECTION
Asurements | | 0
R I G H | .3-M TCT
T SIDEWAL | ADAPTIVE W
L BOUNDARY | ALL TEST S
-LAYER MEA | SECTION
Asurement | v | |--|---|-------------------------------|--|----------------------------|--|---|---|--|----------------------------------|--| | 213 . 8 . 24 | 1.00% | OTAL BL RE! | MOVAL PORT | 1=0 | 213 - | 8 · 25 | 1.80% 10 | TAL BL REI | MOVAL PO | R T = 0 | | VERAGE MACH NIVERAGE REYNOLIVERAGE STAGNAVERAGE STAGNAVERAGE STAGNAVERAGE STAGNAVERATIO OF SPECI | UMBER
DS NUMBER/F
TION PRESSU
TION TEMPER
FIC HEATS | T
RE PSIA
ATURE K | 8.0
1.0
7.4.0 | 005
365
120
000 | AVERAGE
AVERAGE
AVERAGE
PRANDTU
RATIOO | E MACH NULLE STAGNATE STAGNATE STAGNATE LAUMBER LAUMBER OF SPECIF | MBER
S NUMBER/FT
ION PRESSUR
ION TEMPERA
IC HEATS | E PSIA
TURE K | 272 | 8048
E+08
3702
8500
4000
9126 | | FERENCE LEN
LUE OF N IN | | (INCHES)
ROFILE
DELTA/L | 11.2 | 00
61
89 | ALUE | F N IN | WER LAW PI | OFILE
ELTA/L | 13 | 412 | | ISPLACEMENT TOMENTOMENTUM THICK | THICKNESS DE
Kness theta/ | LTASTAR/L
L | | 457
1318
389 | DISPLA(MOMERATISHAPE | CEMENT THUM THICKN FACTOR | ICKNESS DEL
ESS THETA/L | TASTAK/L | | . 0242 | | : DISPLACEMEN
TO COMPRESS
: DISPLACEMEN
USING POWER | NI AND MOMEN
Sible values
Ni and momen
R-law from h | NTUM THICKNS:
NTUM THICKN | VESS REFER
Ness calcul
RST Tube. | ATED | A: D1S
10
B: D1S
US1 | PLACEMENT
COMPRESSI
PLACEMENT
NG POWER- | AND MOMEN
BLE VALUES
AND MOMEN
LAW FROM W | TUM THICKN
TUM THICKN
ALL TO FIR | ESS REFE
ESS CALC
ST TUBE. | R
ULATED | | ۸۰. ۲/۲ | M/MINF | P / P T | T/TINF | U/UINF | . 0 % | | 2 | Δ. | NIL | 44 14 | | .033 | 62 | 143 | 045 | 79 | - 21 | 33 | 855 | 960 | 029 | 267 | | . 118 | 371 | 707 | 025 | 383 | W 4 1 | 5.3 | 228 | 63 | 014 | 35 | | 195 | 326
936 | 943 | 015 | 331 | n 0 r | 227 | 962 | 700 | 007 | 996 | | 304 | 949 | 961 | 010. | 4 | . 60 0> | 304 | 980 | 986 | 007 | 2000 | | 390 | 971 | 0 00 0
0 00 0 | 003 | 985 | 011 | 390 | 766 | , o o | | 966 | | 112 . 4696
12 . 4696
13 . 5114
14 . 5567 | . 9941 | 9982 | 1.0012 | . 9947
. 9982
. 9982 | 7 1 1 1 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 | 5114 | 9983 | . 9986
. 9980
. 9986 | 1.0004 | . 9985
. 9978
. 9984 | | 265. | 666 | 666 | 00. | 666 | 2 | | | | | | | TEST SECTIO | YER | |-------------|---------------| | = | - | | 3 | > | | DAPTIVE | L BOUNDARY-LI | | < | - | | 0.3-H TCT A | SIDENAL | | 0 | RIGHT | | 213 - 9 - 26 | RIGHT SIDEWALL BO | OUNDARY-LAYER M | EASUREMEN. | S L | œ | 0.3-M TC | T ADAPTIV | E WALL TEST
ARY-LAYER M | SECTION
Easureme | S | |--|--|--|-----------------------------------|--------------------------|---|---|--|--|-------------------------------|----------------------------------| | VERAGE MACH NUMBER FT 1 | 13 - 9 - 26 0.0 | OX TOTAL BL | MOVAL P | ≈ | _ | 9 - 2 | 0.5× | OTAL BL R | MOVAL | 7 0 ⊢ | | ### CONTRINGER CALE CINCHES) 1.4000 PARIDIE CHERTS 1.4000 #### CONTRICT FERRICE CINCHES) 1.4000 ################################## | VERAGE MACH NUMBER
VERAGE REYMOLDS MU
VERAGE STAGNATION
VERAGE STAGNATION | ER/FT
ESSURE PSI
MPERATURE | .26
74
230 | 653
E+0
429
756 | > > > > > > > > > > > > > > > > > > > | GE MACH | UMBER
DS NUMBER
TION PRES | FT
URE PSI | 2. | .649
9E+0
.552 | | ALUE OF W IN POUR LIAN PROFILE : .6284 BOUNDARY LAYER THICKNESS DELTA/L : .6284 BOUNDARY LAYER THICKNESS DELTA/L : .6284 BOUNDARY LAYER THICKNESS DELTA/L : .0550 SPECIAL CHEMINA THICKNESS DELTA/L : .0550 HAPE FACTOR PREFER THICKNESS DELTA/L : .0550 HAPE FACTOR THICKNESS THETA/L : .0550 HAPE FACTOR THICKNESS PREFER THICKNESS DELTA/L : .0550 HAPE FACTOR THICKNESS PREFER THICKNESS PREFER THICKNESS PREFER THICKNESS PREFER TO COMPRESSIBLE WILLES | KANDIL NOMBER
ATIO OF SPECIFIC H
ECOVERY FACTOR
EFERENCE LENGTH SC | ATS
Le L (INCHES | | 760
400
912
000 | R A A A A A A A A A A A A A A A A A A A | TE NUMBE
OF SPEC
ERY FACT | FICHEATS R CONTRACT | KAIURE K | 23 | . 683
. 760
. 400
. 912 | | The factor of | OUNDARY-LAYER THIC | AW PROFILE
ESS DELTA/L | 7 | 639 | ALU | OF N IN | POWER LAW
THICKNES | L (INCHES
PROFILE
DELTA/L | | 000
749
534 | | The compressible values | 1971ACEMENT THICKNESS THAPE FACTOR | S DELTASTAR/
Eta/l | - | 080
056
435 | I SPOME | ACEMENT
TUM THIC | HICKNESS
Ness thet | ELTASTAR/
/L | - | 055
039
378 | | V/L M/MINF P/PT T/TINF U/UINF NO. Y/L M/MINF P/PT T/TINF U/UINF .0337 .6897 .8627 1.0395 .7568 2 .7573 .8810 1.0338 .749 .0754 .7645 .8827 1.0290 .7926 2 .0754 .8027 .9064 1.0261 .813 .153 .8827 .7926 .7926 3 .0754 .8027 .9064 1.0261 .813 .153 .8837 .9967 1.0226 .8430 .7726 .915 .9565 1.0172 .856 .2272 .8520 .9264 .1026 .8430 .7272 .913 .9498 1.0173 .8819 .72624 .9298 1.0177 .948 1.0177 .948 1.0177 .948 1.0177 .948 1.0177 .948 1.0177 .948 1.0178 .926 1.0178 .926 1.0178 .926 1.0178 .926 1.0178 <th>DISPLACEMENT AND
TO COMPRESSIBLE V
DISPLACEMENT AND
USING POWER-LAW F</th> <th>OMENTUM THICK
LUES.
OMENTUM THICK
OM WALL TO FI</th> <th>ESS REFE
ESS CALCI
ST TUBE.</th> <th>LATE</th> <th></th> <th>SPLACEME
COMPRES
SPLACEME
ING POWE</th> <th>AND MOM
BLE VALU
AND MOM
LAW FROM</th> <th>TUM THICK!
TUM THICK!
ALL TO FII</th> <th>ESS REF
ESS CAL
ST TUBE</th>
<th>R
ULATEI</th> | DISPLACEMENT AND
TO COMPRESSIBLE V
DISPLACEMENT AND
USING POWER-LAW F | OMENTUM THICK
LUES.
OMENTUM THICK
OM WALL TO FI | ESS REFE
ESS CALCI
ST TUBE. | LATE | | SPLACEME
COMPRES
SPLACEME
ING POWE | AND MOM
BLE VALU
AND MOM
LAW FROM | TUM THICK!
TUM THICK!
ALL TO FII | ESS REF
ESS CAL
ST TUBE | R
ULATEI | | . 1934 | 1/4 1/4 · | F P/P | /TIN | / U I N | | _ | MIM/ | _ | /TIN | 10/ | | 1530 .8967 1.0290 .7926 3 .1184 .8483 .9256 1.0205 .8142 .8142 .81483 .9256 1.0205 .8150 .9256 1.0205 .8550 .9265 1.0205 .8813 .9700 1.0205 .8813 .8737 .9770 .9498 1.0172 .8813 .9265 1.0205 .8810 .9270 .9482 1.0117 .9270 .9272 .9153 .9565 1.0117 .9270 .9272 .9153 .9565 1.0117 .9270 .9272 .9187 .9784 1.0077 .948 .9270 .9272 .9273 .9769 1.0077 .948 .9270 .9270 .94843 1.0077 .959 .94843 1.0077 .959 .94843 1.0061 .978 .94843 1.0061 .978 .98843 1.0061 .978 .98843 1.0061 .978 .98843 1.0061 .998 .9885 1.0061 .998 .9885 1.0061 .998 .988 1.0061 .998 .988 .998 .998 .998 .998 .998 .998 | . 0554 | 7 .862
5 .882 | .039 | 703 | - 0 | 033 | 737 | 881 | . 033 | 672 | | 1955 .8336 .9184 1.0226 .8430 .8737 .9370 1.0172 .88136 .2272 .8520 .9265 1.0226 .8606 6 .2272 .9013 .9498 1.0136 .907 .2624 .8766 1.0173 .8819 7 .2624 .9298 .9636 1.0117 .920 .3043 .9482 1.0141 .9055 8 .3043 .9450 .9711 1.0077 .948 .3417 .9487 .9769 .9450 .9769 .9769 1.0077 .948 .4289 .9601 .9786 1.0080 .9474 10 .3903 .9769 .9843 1.0067 .9874 1.0067 .9863 .9805 1.0028 .981 .5486 .9966 .9856 1.0013 .9956 1.0013 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956 1.0010 .9956< | . 1530 . 80 | 3 .896
7 .905 | .029 | 792 | M | 118 | 848 | 906
925 | . 026 | 813
856 | | 2624 .8606 6 .2272 .9153 .9565 1.0117 .9819 .3043 .9480 .94819 7 .2624 .9988 .9636 1.0117 .936 .3043 .9482 .9482 1.0114 .9055 8 .3643 .9450 .9711 1.0077 .948 .3417 .9187 .9771 1.0114 .9240 .9748 .9653 .9769 1.0077 .948 .3903 .9450 .9776 .9769 1.0061 .959 .4686 .9781 1.0077 .978 .4686 .9769 .9916 1.0012 .9856 1.0022 .9856 .5114 .9927 .9926 1.0010 .993 .5567 .9950 1.0007 .9956 1.0007 .9956 .5981 .9958 1.0007 .9958 1.0007 .9958 | . 1955 | 918 | . 022 | 84.3 | 4 10 | 153
195 | 873 | 070 | .017 | 881 | | 3443 .9685 1.0141 .9055 1.0098 .934 3417 .9187 .9240 .9240 .9450 .9711 11.0077 .948 .3417 .9187 .9771 1.0014 .9240 .9450 .9711 11.0077 .948 .3437 .9729 .9786 1.0067 .9629 10 .3903 .9769 .9843 1.0061 .9729 .4696 .9729 .9854 1.0067 .9863 .9805 1.0028 .981 .5114 .9986 .9960 1.0022 .9856 1.0020 .987 .5567 .9909 .9950 1.0013 .9956 1.0010 .993 .5981 .9953 .9974 1.0007 .995 .5981 .9975 1.0007 .9956 1.0007 .995 | 2624 . 87 | 3 | .020 | 860
881 | 10 | 227 | 915 | 926 | . 011 | 920 | | .3903 .9437 .9701 1.0080 .9474 10 .3903 .9769 1.0061 .959 .4289 .9601 .9786 1.0057 .9629 11 .4289 .9805 .9843 1.0042 .972 .4696 .9729 .9854 1.0039 .9748 12 .4696 .9863 .9926 1.0028 .987 .5514 .9845 .9916 1.0022 .9856 13 .5114 .9927 .9960 1.0010 .993 .5567 .9909 .9950 1.0013 .9916 14 .5567 .9951 .9974 1.0007 .995 | .3417 .91 | 2 . 948
7 . 957 | 014 | 905 | ~ ∞ | 304 | 945 | 965
971 | .009
.007 | 934 | | . 4696 . 9729 . 9854 1.0039 . 9748 12 . 4696 . 9865 . 9895 1.0028 . 981 . 981 . 981 . 981 . 981 . 981 . 981 . 981 . 9826 1.0020 . 985 . 9856 . 9856 . 9856 . 9856 1.0020 . 985 . 9950 . 9950 1.0013 . 9916 5567 . 9951 . 9954 1.0007 . 995 9954 1.0007 . 995 9954 1.0007 . 995 9954 1.0007 . 995 9955 1.0007 . 995 99586 1.0004 997 | . 4289 . 94 | 7 .970 | 0008 | 776 | | 341
390 | 956
970 | 976984 | .006 | 959 | | . 5567 . 9950 . 9950 . 9956 . 13 . 5114 . 9957 . 9960 . 9970 . 99 | 76. 696. | 985 | . 003 | 726 | | 428 | 980 | 989 | .002 | 981 | | 595. 1000.1 5986. 1598. 1598. 1598. 1000.1 5986. 1000.1 5987. 1598. | 7556. | 200. | .002 | 985 | | 511 | 992 | 966 | . 001 | 900 | | | | | . 000 | | | 598 | 266 | 966 | 0000. | 7 6 6 | | 0.3-M TCT ADAPTIVE WALL TEST SECTION
RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS | 213 - 10 - 32 0.00% TOTAL BL REMOVAL PORT=0 | FT 270E+08
SURE PSIA : 63.0846
ERATURE K : 130.5746
: 7601
: 1.000 | VALUE OF N IN POWER LAW PROFILE : 7.6239, BOUNDARY-LAYER THICKNESS DELTA/L : .5948 DISPLACEMENT THICKNESS DELTASTAR/L : .0708 MOMENTUM THICKNESS THETA/L : .0541 SHAPE FACTOR : 1.3082 | RESSIBLE VALUES. EMENT AND MOMENTUM THICKNESS REFEMENT AND MOMENTUM THICKNESS CALOWER-LAW FROM WALL TO FIRST TUBE | Y/L M/MINT P/FI 1/12 (700) | 0337
0754
1184 | 25 | 2/2/2 . 2007 . 2875 1.0033 . 893
2624 . 8916 . 9902 1.0026 . 917 | 9 3547 9342 39922 1.0020 935
9 3903 9510 9941 1.0015 951 | 956. 1.001. 3960 4.001. 3960 5.000. 3960 5.000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0000. 3975 5.0 | 5567 .9915 .9990 1.0004 .988
.9915 .9990 1.0003 .999 | 5 5981 3444. 0544. 1865. 5 | |--|---|---|--|---|----------------------------|-------------------------|----------------|---|---
--|---|----------------------------| | | 0 = | 355
34
11
00
00
26 | 757
962
463
340
642 | LATED | u_ | .7678
.8320
.8769 | 901 | 993 | 900 | 986 | 000 | 866 | | ECTION
SUREMENTS | OVAL PORT | 230.65
230.65
230.65
1.40 | 10.67 | NESS REFER
Ness calcu
RST Tube. | | 03 | 014 | . 009
. 007 | 200. | 00. | | 00. | | ALL TEST S
-LAYER MEA | AL BL REMO | E PSIA
Ture K
(Inches) | ROFILE
DELTA/L
LTASTAR/L
L | TUM THICK
TUM THICK
ALL TO FI | P/PT | ~ ~ ~ | 0 4 6
0 5 9 | 965
971 | 9 7 8 9 9 9 9 9 9 | 766 | 9982
9982
9885 | 566 | | ADAPTIVE W
L BOUNDARY | 1.0% TOT | 4BER
S NUMBER/FT
ION PRESSUR
ION TEMPERA
IC HEATS
H SCALE L | OWER LAW PRITHICKNESS () ICKNESS DEI | AND MOMEN
BLE VALUES
AND MOMEN
LAW FROM W | M/MINF | 55 | 394 | 346 | 989 | 981 | . 9926
. 9967
. 9972 | 366 | | 0.3-M TCT
HT SIDEWAL | 9 - 29 | E MACH NUP
E REYNOLDS
E STAGNATI
E STAGNATI
OF SPECIF
OF SPECIF
NCE LENGT | OF N IN POARY-LAYER TACEMENT TH | SPLACEMENT
COMPRESSI
SPLACEMENT
ING POWER- | ٨/١ | 33 | 153 | 227 | 304 | 390
428 | . 5114 | 265 | | R 1 G | 213 - | AVERAGI
AVERAGI
AVERAGI
PRANDI
RECOVE | ALUE
OUND
I SPL
IOMEN | A: 01
TO
B: 01
US | 0 X | - 2 | W 4 r | n 4 h | . 0 | 10 | 132 | 154 | | T ADAPTIVE WALL TEST | ALL | |----------------------|-------| | 10 | T. | | 0.3-M TC | SID | | 0 | RIGHT | | O.3-M TCT ADAPTIVE WALL TEST SECTION
RIGHT SIDEWALL BOUNDARY·LAYER MEASUREMENTS | 213 - 10 - 34 0.80% TOTAL BL REMOVAL PORT=0 | MBER/FT : 2 PRESSURE PSIA : 6 TEMPERATURE K : 12 EATS : 6 | ALUE OF N IN POWER LAW PROFILE : 9.669 SUNDARY-LAYER THICKNESS DELTA/L : .497; ISPLACEMENT THICKNESS DELTASTAR/L : .0466 NENTUM THICKNESS THETA/L : .037; APPE FACTOR : .1.252 | REFER
CALCULATI
TUBE. | I W / W | 5700 1 5079, 5454 | 787. 250. 1979. 2518. 3815. 10055 | 9835 .9846 1.0041 .869 | 1955 . 9190 . 9903 1.0025 . 920 | 2624 | 9585 .9949 1.0019 .942 | 956. 100:1 5963 1.0010 050 | 0.76. 1.000.1 4799. 8879. 2825. | 900, 1,000, 1,000, 9887 | 266. 1000.1 5666. 2566. 7153 | 766. 1000.1 7666. 7766. 4116. | 5.58 | |---|---|--|---|--|------------------|---|-----------------------------------|---|-----------------------------------|------------------------------|------------------------|---------------------------------|--|---------------------------|--------------------------------|-------------------------------|------------------------------| | U.S.M. ICT ADAPTIVE WALL TEST SECTION
Right Sidewall Boundary-Layer Measurements | 213 - 10 - 33 0.50% TOTAL BL REMOVAL PORT=0 | FRAGE MACH NUMBER FRAGE REYNOLDS NUMBER/FT FRAGE STAGNATION PRESSURE P ERAGE STAGNATION TEMPERATURE ANDTL NUMBER TIO OF SPECIFIC HEATS COVERY FACTOR FERENCE LENGTH SCALE L (INC | ALUE OF N IN POWER LAW PROFILE : 8.883: DUNDARY-LAYER THICKNESS DELTA/L : .531; ISPLACEMENT THICKNESS DELTASTAR/L : .054; DMENTUM THICKNESS THETA/L : .043(HAPE FACTOR : .1.269(| A: DISPLACEMENT AND MOMENTUM THICKNESS REFER
TO COMPRESSIBLE VALUES.
B: DISPLACEMENT AND MOMENTUM THICKNESS CALCULATED
USING POWER-LAW FROM WALL TO FIRST TUBE. | · Y/L M/MINF P/P | .055, .7281 .9706 1.0078 .730 .0756 .0756 | 1184 . 8473 . 9823 1.0047 . 849 | . 1955 . 8631 . 9840 1.0042 . 865
. 1955 . 8972 . 9872 . 985 | . 2272 . 9085 . 9890 1.0020 . 908 | 2624 .9251 .9909 1.0024 .926 | 99 .3043 .9444 .99 | 0 .3903 .9693 .9962 1.0014 .958 | 996. 0100.1 2066. 5813 . 9977 1.0006. 6813 | 2 .9909909988 1 0003 .999 | 3 1.000 2000 1 2000 7500 7113. | 7567 .9961 .9995 1.0001 .998 | 5981 .9962 .9995 1.0001 .996 | | CTION
UREMENTS | VAL PORT=0 | 270E+08
270E+08
40.3580
. 129.8244 | 1.400
.912
1.000
9.253 | 0565
0427
1.3218 | S REFER
S CALCULATED
TUBE. | TINF U/UINF | .0206 .740
.0161 .803
.0129 .846 | .0111 .869
.0088 .898
.0077 .911 | .0064 .926 | .0040
.0028
.0019
.0019 | .00012 .9868
.0006 .9931
.0003 .9962
.0002 .9981 | | |------------------------------|------------------|--|---|---|--|-------------|--|--|------------|---|---|----| | ALL TEST SE
·LAYER MEAS | TAL BL REMO | iE PSIA
ITURE K | (INCHES)
Rofile
Delta/L | LTASTAR/L
L | TUM THICKNES TUM THICKNES ALL TO FIRST | / P.T | 9251
9406
9522 | 9586
9671
9711 | 9757 | 9848
9895
9928 | . 9955
. 9976
. 9987
. 9993 | | | T ADAPTIVE W
All Boundary | 0.50% TO | UMBER
DS NUMBE
TION PRE | FIC HEATS R TH SCALE L POWER LAW P THICKNESS | HICKNESS DE
Ness theta/ | T AND MOMEN
IBLE VALUES
I AND MOMEN
LAN FROM W | 22 | 733
797
841 | 8 6 4
8 9 4
9 0 7 | 923 | 52
67
78 | . 9862
. 9928
. 9960
. 9980 | | | O.3-M TC
Right Sidew/ | 3 · 11 · 36 | RAGE MACH NI
RAGE REYNOL
RAGE STAGNA
RAGE STAGNA
NDTL NUMBER | O OF SPEC
VERY FACT
RENCE LEN
E OF N IN
DARY-LAYE | PLACEMENT T
ENTUM THICK
PE FACTOR | DISPLACEMEN
TO COMPRESS
DISPLACEMEN
USING POWER | / } | 033
075
118 | 153 | 262 | 341
390
428 | . 5114
. 5567
. 5981 | | | | 21 | A A A A A A A A A A A A A A A A A A A | ∢ шш ∢ 0 | N I O I W |
∢ es | .03 | - 0 M | 4 10 4 | 0 ~ 60 | | 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | | | S LI | PORT = 0 | .5016
71E+08
0.3588
9.7746 | 400
912
000
656 | .0758
.0556
1.3634 | ER
CULATED | U/UINF | .702 | . 817 | .887 | 9 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 | 9857
9857
9851
9921 | | | T SECTION
Measuremen | REMOVAL P | | | | CKNESS REF
CKNESS CAL
FIRST TUBE | T/TINF | 023 | 212 | 000 | 000 | 1.0022 | | | E WALL TES
ARY-LAYER | TOTAL BL | /FT
Sure PSIA
Erature K | L (INCHES
PROFILE
S DELTA/L | DELTASTAR/
A/L | ENTUM THI
ES.
ENTUM THI
WALL TO | 1 d / d | 915 | 958
953
952 | 957 | 976 | 9789.
99169.
9950.
9970. | • | | CT ADAPTIVI
Wall Bound | \$ 0.00 % | NUMBER
LDS NUMBER
ATION PRES
ATION TEMP | K
IFIC HEATS
OR
GTH SCALE
POWER LAN | THICKN
Kness | NT AND MOM
SIBLE VALU
NT AND MOM
R-LAW FROM | M/HINF | 694
750 | 789
811
843 | 882 | 925 | .9620
.9744
.9851
.9918 | , | | O.3-M TO | 3 - 11 - 39 | RAGE MACH
RAGE REYNO
RAGE STAGN | DIL NUMBE
O OF SPEC
VERY FACT
RENCE LEN
E OF N IN | PLACEMENT
ENTUM THI
PE FACTOR | DISPLACEME
TO COMPRES
DISPLACEME
USING POWE | 1/1 | 033 | 118
153
195 | 2227 | 341 | . 55567 | 20 | | _ | 213 | A A A A A A A A A A A A A A A A A A A | R E E E E E E E E E E E E E E E E E E E | N T T |
≪ œ | 0 x | - 2 | w 4 w | 9~0 | 000 | 132 | _ | | TEST SECTION ER
MEASUREMENTS BL REMOVAL PORT=0 | : .265E+08
: .265E+08
K : 130.4389
: .7600
: 1.4000
: .9126
: .9126 | R/L: .0785
: .0785
: .0519 | ICKNESS REFER
ICKNESS CALCULATED
FIRST TUBE. | 7 T/TINF U/UINF
9 1.0587 .7215
6 1.0490 .7743
3 1.0426 .8074
5 1.0381 .8299
5 1.0291 .8570
8 1.0291 .8732
5 1.0200 .9146
6 1.0162 .9313
7 1.0162 .9533 | 1.0032 .987
1.0017 .993
1.0007 .993 | |---|--|---|--|---|---| | T ADAPTIVE WALL
ALL BOUNDARY-LAY
0.00% TOTAL | UMBER
DS NUMBER/FT
TION PRESSURE PS
TION TEMPERATURE
FIC HEATS
R | POWER LAW PROFILE THICKNESS DELTA/ HICKNESS DELTASTA NESS THETA/L | T AND MOMENTUM THIBLE VALUES. T AND MOMENTUM TH | 7012
7012
7012
7014
804
804
8614
8614
8614
8614
8614
8614
9614
9614
9614
9614
9614
9614
9614
9 | 9855 .988
9923 .993
9968 .997 | | 0.3-M TC
RIGHT SIDEW
213 - 12 - 38 | AVERAGE MACH N
AVERAGE REYNOL
AVERAGE STAGNA
AVERAGE STAGNA
PRANDTL NUMBER
RATIO OF SPECT
RECOVERY FACTO | VALUE OF N IN
BOUNDARY-LAYER
DISPLACEMENT T
MOMENTUM THICK
SHAPE FACTOR | A: DISPLACEMEN
TO COMPRESS
B: DISPLACEMEN
USING POWER | NO. Y/L 2 . 0337 2 . 1184 4 . 1530 5 . 2272 7 . 2624 8 . 3043 9 . 3417 10 . 3903 | 3 511.
5 556
5 598 | | SECTION
ASUREMENTS
MOVAL PORT=0 | 266E + 08
. 39.6549
. 129.8313
. 7600
. 1.4000
. 9126 | . 10.3355
. 5049
0467
0359
1.2993 | ESS REFER
ESS CALCULATED
ST TUBE. | 1.0192 . 7606
1.0145 . 8264
1.0145 . 8715
1.0091 . 8715
1.0068 . 9225
1.0058 . 9338
1.0028 . 9592
1.0028 . 9689
1.0012 . 9867
1.00012 . 9867 | .0004 ,995
.0003 ,997
.0002 ,998 | | ADAPTIVE WALL TEST
LL BOUMDARY-LAYER ME
1.00% TOTAL BL RE | MBER
S NUMBER/FT
ION PRESSURE PSIA
ION TEMPERATURE K
IC HEATS | OWER LAW PROFILE THICKNESS DELTA/L ICKNESS DELTASTAR/L ESS THETA/L | AND MOMENTUM THICKNE
BLE VALUES.
AND MOMENTUM THICKNE
LAW FROM WALL TO FIRS | M/MINF P/PT
8205 9298
8205 9466
8911 9592
9194 9745
9311 9780
9575 9862
9676 9862
9676 9862
9676 9894
9787 9930 | 9954 . 998
9970 . 999
9982 . 999 | | 0.3-M TCT
RIGHT SIDEWA
213 - 11 - 37 | >>>> × × × ш ш | VALUE OF W IN P
BOUNDARY-LAYER
DISPLACEMENT TH
MOMENTUM THICKN
SHAPE FACTOR | A: DISPLACEMENT
TO COMPRESSI
B: DISPLACEMENT
USING POWER- | NO. Y/L
2 .0337
3 .1184
4 .1530
5 .2624
7 .2624
8 .3043
9 .3417
10 .3903
11 .4289 | 556 | | SECTION
Asurements | MOVAL PORT=0 | 266E+08
27.1096
. 124.9405
. 124.9405
1.4000 | : | ESS REFER
ESS CALCULATED
ST TUBE. | 1.0471 .7842
1.0351 .8446
1.0266 .8847
1.0212 .9094
1.0137 .9335
1.0136 .9559
1.0059 .9659
1.0022 .9909
1.0007 .9972
1.0007 .9981 | |---------------------------|--------------|--|--|--|--| | WALL TEST
Y-LAYER ME | OTAL BL RE | RE PSIA
ATURE K
(INCHES) | ROFILE
DELTA/L
LTASTAR/L
L | TUM THICKNITUM THICKNI | P / B 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | T ADAPTIVE
All Boundar | 1.00% T | UMBER/F
DS NUMBER/F
TION PRESSU
TION TEMPER
FIC HEATS
R
TH SCALE L | POWER LAW P
THICKNESS
HICKNESS DE
NESS THETA/ | T AND MOMEN
18LE VALUES
T AND MOMEN
- LAW FROM W. | M/M
2664
83302
98732
99263
9725
9928
9939
9939
9979 | | O.3-M TC
IGHT SIDEW | . 12 - 40 | AGE MACH NAGE REYNOL
AGE STAGNA
AGE STAGNA
AGE STAGNA
O OF SPECT
VERY FACTO | DARY-LAYER
LACEMENT T
NTUM THICK
E FACTOR | ISPLACEMENO COMPRESS ISPLACEMEN | | | ~ | 213 | R R R R R R R R R R R R R R R R R R R | VALU
BOUN
DISP
MONE
SHAPE | Q ⊢ Q ⊃
≪ 88 | . + ww 4 % % ~ & & 0 1 1 5 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | | S 1 | OR T = 0 | .8213
7E+08
7E+08
.0725
.7600
.4000
.9126 | .1768
.5399
.0569
.0387 | R
ULATED | U/UINF
7607
8200
88591
98834
9208
92084
9594
9594
9594
9655 | | SECTION | MOVAL P | | | ESS REFEI
ESS CALCI
ST TUBE. | 1/110519
1.0519
1.0222
1.0232
1.0232
1.0123
1.0065
1.0065
1.0065
1.00065 | | WALL TEST
RY-LAYER ME | TOTAL BL RE | URE PSIA
RATURE K
L (INCHES) | PROFILE
DELTA/L
ELTASTAR/L
/L | NTUM THICKNISS. NTUM THICKNI | 7 | | T ADAPTIVE
All Bounda | 0.50% | UMBER
DS NUMBER/
TION PRESS
TION TEMPE
FIC HEATS
TH SCALE | POWER LAW
THICKNESS
HICKNESS D
HESS THETA | T AND MOME! IBLE VALUE: T AND MOME! -LAW FROM 1 | 7 7 7 8 8 8 8 7 7 7 7 8 8 8 8 8 7 7 7 9 8 8 8 7 1 7 7 8 8 8 8 7 1 7 7 8 8 8 8 7 2 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | O.3·M TC
RIGHT SIDEW | 12 - 39 | AGE MACH AGE STAGNA AGE STAGNA AGE STAGNA AGE STAGNA OT NUMBER O OF SPECTO KEN G LENG | DARY-LAYER
LACEMENT T
NTUM THICK | ISPLACEMEN
O COMPRESS
ISPLACEMEN
SING POWER | 7 / L
0 0 3 3 7
10 75 4
11 75 8
12 2 7 2
2 2 7 2
2 2 7 2
3 3 4 1 7
3 4 1 1 7
5 5 6 7
5 5 6 7
5 5 6 7 | | ~ | 213 | R R R R R R R R R R R R R R R R R R R | VALU
BOUN
DISP
MOME
STAP | v = 0.⊐ | 3 - 0 m 4 m 4 m 4 m 6 m 4 m 4 m 4 m 4 m 4 m 4 | | ECT 10N
Surements | OVAL PORT=0 | 268E+08
268E+08
35.4939
151.7030
7600
4000
9126
0000 | . 079
. 079
. 052
. 1 | ESS REFER
ESS CALCULATED
ST TUBE. | INF U/UIN | .0614 .723
.0514 .775
.0447 .808
.0401 .830 | .0343 .856
.0309 .872
.0264 .891 | 1.0215 .9127
1.0176 .9294
1.0123 .9512
1.0091 .9643 | . 0035
. 0035
. 0019
. 0008 | |---------------------------|-------------|--|--|---|---------------|--|---|--|--------------------------------------| | ALL TEST S
-LAYER MEA | TAL BL REM | TURE TURE CINCHI | EL TA
Tast | TUM THICKNETUM THICKNE | P / P T | 797
826
846
861 | 879
891
905 | . 9223
. 9361
. 9547
. 9664 | 986
995
996 | | ADAPTIVE W
Ll boundary | 0.00% TO | S NUMBER/F.
S NUMBER/F.
ION PRESSU
ION TEMPER.
IC HEATS
H SCALE L | THICKNESS ICKNESS DE | AND MOMEN
BLE VALUES
AND MOMEN
LAW FROM W | H/MIN/ | 702
756
790
814 | 842
859
880 | . 9030
. 9214
. 9454
. 9599 | 984
994
996 | | 0.3-M TCT
GHT SIDEWA | - 13 - 42 | GE MACH NUI
GE STAGNATO
GE STAGNAT
TE NUMBER
OF SPECIF
ERY FACTOR
ENCE LENGT | ARY-LAYER
Acement t
Tum thick
Factor | SPLACEMENT
COMPRESSI
SPLACEMENT | ٧/٢ | 033
075
118
153 | 195
227
262 | 3417 3903 4289 | 5 5 6
5 5 6
5 9 8
5 9 8 | |
«с | 213 | A A A A C E R A A A C E R A A A C E R B A C E R B A B A B A B A B A B A B A B A B A B | I SP
OME | . A
. B
. D I
. S
. US | 0 |
- NM 4 | · v • v | 8000 | 2
2
4
1
5
1
5 | | | T = 0 | 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | .578
3361
1254
249 | LATED | U/UINF | 805
866
906 | 953
953
961 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9 0 0 0
0 0 0 0
0 0 0 0 | | SECTION
A Surements | MOVAL POR | 262. | | ESS REFERES CALCUST TUBE. | T/TINF | 043 | 016 | 1.0070
1.0049
1.0034
1.0018 | 0000 | | WALL TEST
Y-LAYER ME | OTAL BL RE | TURE C 1 NC | DELTA/L
LTASTAR/L
L | TUM THICKN
TUM THICKN
ALL TO FIR | 1 4 / 4 | 852
891
921 | 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | . 9814
. 9871
. 9931 | 9 6 6 6
9 6 6 6
9 6 6 6 | | ADAPTIVE I | 1.80% T | MBER
SONUMBER,
SONUMBER,
SON TEMPP
SCALE
H SCALE | THICKNESS
ICKNESS D
ESS THETA | AND MOMEN
BLE VALUES
AND MOMEN
LAW FROM W | H/HINF | 789
853
897 | 923 | .9677
.9772
.9842
.9916 | 900
900
900
900 | | 0.3-M TCT
Ght Sidewal | - 12 - 41 | GE MACH NUGE STAGNAT GE G | ARY-LAYER
ACEMENT TH
TUM THICKN
FACTOR. | SPLACEMENT
COMPRESSI
SPLACEMENT
ING POWER- | ٧/٢ | 033
075
118 | 153
195
227 | . 2624
. 3043
. 3903
. 4289 | 469
511
556
598 | | R 1 | 213 | FETARER FETARES FETARE | BOUND
DISPL
MOMEN | A: DI
10
8: DI | 0
x | - 0 m | 4 N 0 1 | / 8 9 0 <u>1</u> 1 | 12
13
15 | | SECT 10N
A SUREMENTS | MOVAL PORT=0 | 269E+08
269E+08
35.4116
7600
7600
 | : 11.6066
: .5078
: .0475
: .0325
: 1.4598 | S REFER
S CALCULATED
TUBE. | 111NF U/UINF | 1.0290 .8436
1.0290 .8819 | .0236 .905
.0181 .928
.0154 939 | .0096 . 952
.0096 . 962 | .0074 .971
.0046 .982 | . 00009
. 00009
. 00009 | .0006
.0000
.0000 | |---|--------------|---|---|---|--------------|------------------------------|---------------------------------------|----------------------------|--------------------------|-------------------------------|----------------------------| | 0.3-M TCT ADAPTIVE WALL TEST S
GHT SIDEWALL BOUNDARY-LAYER MEA | OTAL BL REI | RE PSIA
ATURE K
(INCHES) | ROFILE
DELTA/L
LTASTAR/L
L | THICKN
TO FIR | 7 / 4 | . 8972
. 8972 | 915
934
94 | 954 | 972
982
988 | 966
966 | 6
6
6
6
6
6 | | | 1.00% | MBER
S NUMBER/F
ION PRESSU
ION TEMPER
IC HEATS | OWER LAW P
THICKNESS
ICKNESS DE
ICKNESS DE
ESS THETA/ | AND MG
BLE VAI
AND MG
LAW FRG | X Y | . 8282
. 8694 | 894
919
93 | 945 | 967
980
980 | 999
999 | 666
666 | | | - 13 - 45 | GE MACH NU
GE STAGNAT
GE STAGNAT
TE NUMBEN
OF SPECIF
ERY FACTOR | OF N IN PARY-LAYER ACEMENT TH | SPLACEI
COMPRI
SPLACEI
ING POL | \ \
\ \ \ | .0754 | 153
195
227 | 262
304 | 341390 | 4 6 9
4 6 9
5 1 1 | 5 5 6
5 9 8 | | ~ | 213 | R R R P A A A A A A A A A A C E E E E E E E E E | VALUE
BOUND
D I SPL
MOMEN | | • | - N M | 4 W 4 | 0 ~ 60 | | - 21 | | | 6 | RT=0 | 00000000000000000000000000000000000000 | 4 M W M M | | L \ | . 7665
. 8249
. 8633 | 886 | 924
937
951 | 961
975 | 82
89
90
90 | 966 | | 0.3-M TCT ADAPTIVE WALL TEST SECTION
Ht Sidewall Boundary-layer measurements | MOVAL POF | | 10. | ESS REFERESS CALCUST TUBE. | 2 1 | 1.0551
1.0411
1.0328 | 027 | 015 | 900 | 004 | 000 | | | OTAL BL RE | T PSIA ATURE K (INCHES) | ROFILE
DELTA/L
LTASTAR/L
L | TUM T
TUM T
ALL T | 4 | .8581
.8581
.8847 | 902 | 943 | 9 2 6 | 8 8 3 | 966 | | | 0.50% T | MBER
S NUMBER/F
ION PRESSU
ION TEMPER
IC HEATS
H SCALE L | OWER LAW P
THICKNESS
ICKNESS DE
ESS THETA/ | AND MC
AND MC
LAW FRC | Z : | . 7467
. 8085
. 8495 | 902 | 930 | 956
971 | 80 | 966 | | | . 13 - 44 | GE MACH NUI
GE STAGNAT
GE STAGNAT
GE STAGNAT
TE NUMBER
TOF SPECTF | OF N IN PARY-LAYER ACEMENT TH TUM THICKN | SPLACEMENT
COMPRESSI
SPLACEMENT
ING POWER- | > 1 | .0337 | 153 | 262
262
304 | 341 | 28
69
1 | 556
598 | | R 1 G | 213 | A A A A A A A A C E R R A A A C E R R A A A C E R R A A A C E R A A A C E C C C C C C C C C C C C C C C | LUE
UND
UND
SPL
MEN | : 01
10
10
10
10
10 | . 0 | - 2 8 | 4 W . | o ~ « | ر
د د د | - 2 r | . | 0.3-M TCT ADAPTIVE WALL TEST SECTION RIGHT SIDEWALL BOUNDARY-LAYER MEASUREMENTS | | | | | u. | 80000000000000000000000000000000000000 | 0 0 | |----------|---|---|-----------------------|----------|---|-----| | | | | ۵ | Z | 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0 | ~ m m m o o o o | F 0 8 9 4 | <u> </u> | 5 | | | | 11 | 0000000 | 900 900 | - | | | | | - | 4+80000-0 | 40 W W W | < | ⊃ | | | | | 8 1 4 7 4 6 0 | W.4. 0.0.4. | = | | | | | . 0 | 1 1 5 | w | a ⊃ . | | | | | _ | NMN | = | <u> </u> | 14. | 05074-7500044 | • 🔼 | | | • • | | w ∢ ∞ | Z | 4 NM N N O N M N T O O O | | | _ | | | « U ⊃ | _ | 4 M N 0 0 0 0 0 0 0 0 | | | < | | | | _ | 00000000000000 | | | <u> </u> | | | S S - | | | | | Ĭ | | | m m co | _ | | | | ш | | | 2 2 2 | | | | | œ | ^ | _ | × × | | | | | _ | E S | | 21 | | | | | - H | S I | E
/L
AR | H H0 | _ | 38657059125656
38657059125670 | | | | <u> </u> | 5 ₹ | | | 48684468999999 | | | _ | ~ 2 | v | | آه . | 8866666666666 | | | < | > - | <u>~</u> | x x – | | | | | Ξ. | _ == - | R D D L 1 | D D = | | | | | 2 | # Z Z Z | P.R. | - · - < | | | | | - | | l o l d | <u> </u> | | | | | | a w a w | 3 × ⊢ | I D I I | | | | | 34 | | ∢ш ош | 0 - 0 | 14. | 0-7009-07808 | | | 9 | A 4 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | I < I a | Z | | | | ۰. | | & O ≥ | ~ ۵ | Ξ. | \sim | | | _ | | <u> Ξ</u> Ξ ω | Z Z .3 | _ = | | | | | 8 00 U | 3 = 00 | 4 – 4 4 | X | | | | | EVII I | 0 | ₽ → | | | | | _ | 그 유 트 트 트 플 트 | A = = | | | | | | 9 | N J K K K I O O | 32 M C) | | | | | | • | ± 2 0 0 0 0 0 0 | = = = = a | I W I 3 | _ | 7400M7M7M0047 | | | | | < Z=0 | <u> </u> | _ | MW8MW74-080-9 | | | | 4 H F T D 0 F | X — — — | \circ | >- | W 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 | | M | I K W W Z W | E U | < X < | | 00FFF00MMM4466 | | | - | 7 X O C E E E E E E E E E E E E E E E E E E | 7 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | 7 O J Z | | | | | | | V | S S | | | | | | 44440>2 | | S - 0 - 1 | | | | | M | & & & & Z - O W | ⊃ zz | <u> </u> | | | | | - | шшшш∢⊢о⊩ | J⊃ N≖≪ | | • | | | | 7 | >>>> | ₹ 0 ~0∓ | | 0 | - WW 4 W 4 W 8 W 9 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 | | | | <<<< | > m O I v | ≪ ∞ | Z | | _ | | | |
 | |---|--|------| _ | | | | • | NASA
Natorial Aerorautics and
Space Arministration | Report Documer | ntation Page | | | | | |
--|---|---|--|---|--|--|--| | 1. Report No. | 2. Government Accession | No. | 3. Recipient's Catalog | No. | | | | | | | | | | | | | | NASA CR-4192 | | | 5. Report Date | | | | | | 4. Title and Subtitle | de a aumamanta liith | Unatroom | , | | | | | | Sidewall Boundary-Layer N
Suction in the Langley O | | | November 198 | | | | | | Tunnel. | | , 0 | 6. Performing Organiza | ation Code | | | | | 7. Author(s) | | | 8. Performing Organization | ation Report No. | | | | | A. V. Murthy | | | | | | | | | | | | 10. Work Unit No. | | | | | | | | | 505-61-01-0 | 02 | | | | | 9. Performing Organization Name and Address | | | 11. Contract or Grant No. | | | | | | Vigyan Research Associate 28 Research Drive | es, inc. | | | | | | | | Hampton, VA 23666 | | | NAS1-17919 | I Desired Covered | | | | | 10. C A Name and Address | | | 13. Type of Report and | renod Covered | | | | | 12. Sponsoring Agency Name and Address National Aeronautics and | Snace Administrat | ion | Contractor Report | | | | | | Langley Research Center | bpace naministrae | | 14. Sponsoring Agency Code | | | | | | Hampton, VA 23665-5225 | | | | | | | | | 15. Supplementary Notes | | | | | | | | | Langley Technical Monito 16. Abstract The Langley 0.3-Meter 1 | Fransonic Cryogeni | | | | | | | | removal from the sidewatest data. This report change in the empty test model station with upstomeasurements showed that the boundary-layer thickness reduced section width. The boundary-layer moment of boundary-layer moment the section with the outer of boundary-layer moment the section with | t describes the test section sidewal cream boundary-layat the upstream reackness at the mode from about 1.2 periodary-layer veloc region and showed | sts carried ou
l boundary-lay
er mass remova
moval region i
l station. Th
rcent to about
ity profiles f | er thickness and the control of the coundary-lay and percent of ollowed a power. | e the at the ary-layer a reducing yer displace- the test er law | | | | | 17. Key Words (Suggested by Author(s)) Wind tunnels Boundary-layer | | | d - Unlimited
tegory - 02 | | | | | | | | | | | | | | | 19. Security Classif. (of this report) | 20. Security Classif. (of th | s page) | 21. No. of pages | 22. Price | | | | | Unclassified | Unclassified | | 56 | A04 | | | |